
Introducing SOR: SSH-based Onion Routing

André Egners†, Dominic Gatzen†, Andriy Panchenko∗, and Ulrike Meyer†
† Research Group IT Security, UMIC Research Center

RWTH Aachen University, Germany
E-mail: {surname}@umic.rwth-aachen.de

∗ Interdisciplinary Centre for Security, Reliability and Trust
University of Luxembourg, Luxembourg

E-mail: {firstname.lastname}@uni.lu

Abstract—Traditional low-latency anonymization techniques
apply non-standardized, complex, and often even proprietary
protocols. Apart from poor performance, the high develop-
ment effort leads to the existence of at most one single
implementation. This in turn increases the risk of creating
so-called software monocultures, where failures in the single
implementation can compromise the overall security.

In this paper we introduce SOR – a novel approach for
anonymization that is completely based on standardized, well
tested, and performance-tuned protocols. It utilizes out-of-the-
box nested SSH connections to achieve an exhaustive state-
of-the-art anonymization system based on onion routing. Our
approach supports both sender and receiver anonymity. Besides
of many audited implementations, the SSH protocol itself is
mature and has been thoroughly analyzed with respect to
security issues. The results of our evaluation show that our
approach outperforms existing alternatives by a factor of up
to nine without sacrificing the degree of anonymity. Moreover,
SOR can be easily implemented which increases the chances
of having many alternative clients available.

Keywords-Privacy, Anonymity, SSH, Onion Routing

I. INTRODUCTION

With the growth of the information exchange on the
Internet privacy issues attracted a significant importance
and became a concern. While cryptography can be used
to protect the content of communication, it is still visible
who communicates with whom. Anonymous communica-
tion deals with hiding relationships between communicating
parties. Without this protection an attacker is able to deduce
information about the network addresses of involved senders
and recipients. Often this is sufficient to uniquely identify
a person and link this person to the content he accesses or
disseminates.

Many approaches have been proposed to provide
anonymity on the network layer. Still, only a few of them
have reached wide-scale deployment, e.g., JAP [1] and
Tor [2]. All of these approaches rely on non-standardized,
complex, and often even proprietary protocols. This has sev-
eral severe disadvantages. First, due to a high development
effort there exists at most one single implementation. This
inherits the risk of creating so-called software monocultures
where a failure in the single implementation can paralyze
the whole network, possibly compromising the anonymity of

many users. Second, if the underlying protocol specifications
are changed or updated often, as for example in Tor (e.g.,
the existence of already the 3rd generation of the directory
protocol, which is definitely not the final one [3]), additional
implementations are even more difficult to maintain. Third,
the increase of multimedia content transmitted over the
Internet leads to a drastic increase of bandwidth require-
ments. While the backbones and access networks of the
Internet could be adjusted to the increased needs, current
anonymizers have not been able to meet these demands,
thus leading to a decrease in network performance. Practical
usage of the state-of-the-art anonymization networks such as
Tor and JAP usually leads to delays which are not tolerated
by the average end-user [4]. This, in return, discourages
many of them from the use of anonymization and hence
indirectly lowers the protection of remaining users since the
anonymity proportionally depends on the size of the user
base.

The implications of a poor performance have been shown
in [5]: the user base of a network drops linearly with increas-
ing latency. Several papers have dealt with the performance
analysis of anonymization systems [4], [6] and have shown
the need and possibilities for better quality of service and
increased performance [7], [8], [9].

In this paper we address the aforementioned problems by
introducing SOR, a novel efficient anonymization technique
purely based on SSH (Secure SHell) – a well-known,
established, well-tested, and standardized protocol. Even
though the primary intention of this protocol is to access
shell accounts on Unix based systems, this protocol out-
of-the-box provides all the features required to build a
comprehensive anonymization approach. We show how SSH
can be used as a building block to provide state-of-the-art
anonymization based on onion routing. For this, merely a
controller logic has to be implemented. We then provide a
performance evaluation and discuss design implications of
SOR. Furthermore, we compare our approach to Tor – the
most popular low-latency anonymizer.



II. RELATED WORK

The typical approach for anonymization is to send mes-
sages not directly to the recipient, but rather on a detour
through several middle nodes. This can be done in a way
such that the middle nodes cannot determine for certain
whether the relayed data originates from the predecessor or
is forwarded on behalf of other users. The objective of this
procedure is to hide the sender of a message, the receiver
of a message, or the relationship between the sender and
receiver.

In this paper, we focus on low-latency anonymization
networks. These are designed for real-time communication,
such as web-browsing or instant messaging. The oldest
representative in this category is the single hop proxy ap-
proach, e.g., anonymizer.com. Single hop proxies, however,
provide a single point of failure and trust. Therefore, they
are inapplicable for users with a high demand for anonymity.

The most popular and widespread anonymizer today is
Tor. Tor is a low-latency overlay network deployed in late
2003 with the goal to provide protection against a non-
global adversary [2]. It consists of servers that are called
onion routers (ORs). Currently the network is comprised of
about 2,000 ORs1 [10], [11] that are running more or less
permanently by volunteers scattered around the globe.

To anonymize Internet communications, clients’ software,
the onion proxy (OP), constructs circuits of encrypted
connections through a path of randomly chosen ORs. A
Tor circuit, by default, consists of three ORs, where each
OR only knows (i) which peer has sent him data (the
predecessor) and (ii) to which peer he is relaying data (the
successor).

During circuit creation in Tor, the circuit initiator uses
Diffie-Hellman key exchanges to establish shared symmetric
session keys with each OR in the circuit. The user’s OP
encrypts all traffic before it is sent over the circuit using
these keys in reverse order, starting with the key of the last
OR. Upon receiving traffic, each OR on the circuit removes
(or adds, depending on the direction) one layer of encryption
while relaying the data to the next OR, so only the last OR
(the exit node) knows the actual destination of a TCP stream.
The last node in a circuit reassembles the TCP packets and
delivers them to the final destination.

Application data is generally transferred unencrypted be-
tween the exit node and the recipient on the Internet, unless
the user and the recipient are using end-to-end encryption,
e.g., TLS/SSL protocols.

Receiver anonymity in Tor is supported by so-called
hidden services. They rely on rendezvous points that connect
anonymous circuits originating from a client and a hidden
service. A client selects a random Tor node as a rendezvous
point, creates a circuit to it, and informs the hidden service
through one of the introduction points about its willingness

1as in September 2011

to communicate over a specified rendezvous point. Each of
the principals relies on himself to build a secure circuit to
both the introduction and the rendezvous point. According
to Loesing et al. [12], the average time before sending out
the request and getting the answer from a hidden service in
Tor is 24 seconds, which is far more than the average user is
willing to wait (this value is estimated to be about 4 seconds
as stated by Wendolsky et al. [4]).

Besides hidden services in Tor, there are similar concepts
in other networks, e.g., the eepSite concept in I2P [13] and
Freesites in the Freenet network [14]. While eepSites are
specially tailored for web services used in I2P, Freenet uses
distributed redundant storage of data which is accessible
only within the network.

AN.ON [1] (also known as JAP or Jondonym) is based on
onion routing as well. One of the main differences to Tor is
that users cannot choose the circuit freely between the relays.
In AN.ON normally three relays are forming a predefined
path, denoted as cascade. The user only has the possibility
to choose one of the predefined cascades. Moreover, AN.ON
does not provide forward secrecy2.

Tarzan and MorphMix are two peer-to-peer (P2P) based
anonymization techniques for implementing onion routing.
Unlike the earlier approaches, a MorphMix node does not
have to have knowledge about all other MorphMix nodes
in the network. For the circuit setup, so-called witness
nodes are used to facilitate the selection of nodes for
circuit extension. A probabilistic checking is applied to
detect collusion. However, this protection scheme has been
shown to be broken. In Tarzan every node has a set of
peer nodes for exchanging cover traffic which are called
mimics nodes. Nodes select their mimics in a pseudo-random
universally verifiable way. Each Tarzan node needs to know
all other nodes in the Tarzan network. Circuits are built
only through nodes that exchange cover traffic between
themselves. Neither Tarzan nor MorphMix are in active use
today.

The Invisible Internet Project (I2P) system3 is an approach
that makes use of so-called garlic encryption. This is a vari-
ant of onion encryption where multiple messages wrapped
into a single “garlic message”, encrypted with a particular
public key. Intermediary nodes cannot determine how many
messages are in the garlic message and where they are
destined. The paths in I2P are not necessarily symmetric,
as different circuits can be used for in and outgoing traffic.
Problems with I2P include missing transparency for their
network layer protocol and a complete lack of academic
coverage.

Crowds [15] is an alternative to the techniques described
above. It is based on a simple randomized routing protocol,

2Forward secrecy ensures that a session key created from a set of long-
term asymmetric keys will not be compromised if the long-term private key
is compromised in the future.

3See http://www.i2p2.de/ for more information.



where all participants forward messages on behalf of other
users, as well as their own. The main idea of Crowds is
to hide the identity of the sender during communication by
routing the sender’s messages randomly within a group of
similar users (“blending into a crowd”) before the message
is sent to the final recipient. The GNUNet system [16] also
makes use of a randomized routing protocol, where the
forwarding of messages on behalf of the other nodes (here
denoted the “indirection”) depends, among other things, on
the load in the network. Crowds never left the stage of a
research implementation, and further Crowds and GNUNet
offer fairly weak protection against strong attackers [17],
[18].

Another class of anonymizers rely on multi- or broadcast
channels, e.g., [19], [20], [21]. However, due to poor scala-
bility all of these networks are either not used anymore or
do not have a widespread user base.

Shalon [22] is a recent proposal for anonymous commu-
nication that is fully based on standardized protocols and
significantly outperforms Tor. The idea of Shalon is similar
to our approach, however, Shalon is able to provide only
sender anonymity. Even though there is an extension for
Shalon for enabling hidden services [23], this extension
uses modification of standardized protocols to achieve its
functionality. Inspired by the idea of Shalon, we provide an
exhaustive anonymizer that is able to provide both sender
and receiver anonymity.

III. FUNDAMENTALS OF SSH

This section briefly explains the key features of SSH that
are leveraged in our design. For a comprehensive coverage
on the SSH protocol an interested reader is referred to [24].

In short, SSH is a comprehensive protocol which takes
care of the connection establishment, authentication, key
exchange, encryption, as well as connection multiplex-
ing and port forwarding. The SSH protocol allows three
different modes of port forwarding: local, dynamic, and
remote. Local port forwarding forwards traffic coming
to a local port to a specified remote server and port
via the SSH connection to a third node. For exam-
ple, ssh -g -L 4321:www.openssh.com:80 gate cre-
ates an SSH connection to gate, listens locally on port
4321 for incoming connections, and redirects them all
to port 80 of www.openssh.com via the SSH tunnel.
Dynamic port forwarding (-D option) on the other hand
allows the SSH client to dynamically chose to which host
and port data will be forwarded via the SSH connection.
This mode essentially represents a SOCKS proxy running
on the localhost, but instead the traffic is routed via the
SSH server. The reverse port forwarding (-R option) mode
allows the SSH client to reserve a port on the SSH server.
For example, ssh -R 1234:intranet:80 gate creates
an SSH connection to gate, opens port 1234 on gate, and

redirects all the incoming connections of this port to port 80
of intranet through the SSH tunnel.

IV. OUR APPROACH

In this section we introduce our new anonymization
technique called SOR. The key idea of our approach is
to construct an anonymization overlay based on the SSH
tunneling functionalities. We describe how to design a
protocol that achieves both sender and receiver anonymity.
To the best of our knowledge, this is the first proposal how
standardized out-of-the-box protocol can be used to reach
receiver anonymity. Our server is the standard SSH server
without any modifications. Here, we describe the logic of
the controller that has to be implemented at the client side.

A. Protocol for Sender Anonymity

A circuit in SOR is a chain of SSH connections which
are telescoped into each other. To this end we utilize out-
of-the-box features of the SSH protocol.

Client Entry Middle Exit

1

2

3

lp1

lp2

lp3

TCP connection

TCP connection

ssh_port

ssh_port

SSH Tunnel

SSH Tunnel

SSH Tunnel

Figure 1. SOR-Circuit Construction

We make use of local and dynamic port forwarding of
SSH as mentioned above. The goal is to use them to con-
struct a tunnel of onion layered encryption. The construction
(see Figure 1) works as follows:

(1) The client instructs SSH to create an encrypted con-
nection between itself and the Entry node, and to
perform local port forwarding from local port lp1 via
Entry node to the Middle node
(ssh -L lp1:Middle:22 Entry).

(2) The client instructs SSH to create an encrypted con-
nection between itself and the Middle node which is
tunneled through the connection to the Entry node.
Afterwards SSH performs local port forwarding from
local port lp2 via the established tunnel to Middle
node to the Exit node
(ssh -L lp2:Exit:22 localhost -p lp1).

(3) The client instructs SSH to create an encrypted con-
nection between itself and the Exit node which is
tunneled through the connection to the Middle node.



Afterwards SSH performs dynamic port forwarding on
local port lp3 (ssh -D lp3 localhost -p lp2).

The overall procedure yields a three hop circuit with three
layers of onion encryption. Setting dynamic port forwarding
on the last connection (3) to the exit node (besides creating
an encryption layer between the client and the exit node)
effectively enables the SOCKS proxy functionality of SSH
which is made available to the client on local port lp3.
Herewith the client is able to establish TCP connections to
arbitrarily hosts through the tunnel to the exit node. Con-
veniently, multiplexing connection through a SOR circuit is
automatically achieved by the multiplexing functionality of
SSH.

Hence, we reached similar functionality of onion routing
for client traffic anonymization as in other approaches, but
in a simple and elegant way utilizing standardized protocols
and their out-of-the-box implementations.

B. Protocol for Responder Anonymity

In the previous section we explained how to use SSH to
construct the basic block of our approach, i.e., circuits for
sender anonymization. Using this basic block, we are also
able to produce a functionality similar to the hidden services
in Tor, i.e., to achieve responder anonymity, hiding the IP
address of the service from its clients and other network
participants. We refrain from explaining the hidden service
protocol in detail, as its event flow and naming of entities
are very similar to that of the Tor hidden services [2].

In order to achieve responder anonymity, there is a
need to have a possibility to open a port on remote
machines (called Introduction Points in the terminology
of hidden services in Tor). This is the fundamental dif-
ference to the tunnels needed for sender anonymity. The
connections to the remote port have to be transpar-
ently multiplexed and forwarded to the tunnel initiator.
To achieve this functionality, we apply reverse tunneling
of SSH after connecting to the last hop (step (3) of
the protocol in Section IV-A). Hence, one should per-
form ssh -R rp1:localhost:lp3 localhost -p lp2

in order to open remote port rp1 on the last hop (addressed
by local port lp2) and redirect all the incoming connections
to port lp3 of localhost.

To connect to a hidden service the client needs to be
in possession of a descriptor containing the necessary
information, i.e., IP of the introduction points together
with the port for the hidden service. For load distribution
and omitting bottlenecks, similarly to Tor, the client in
SOR randomly chooses a SOR node and declares it
as a rendezvous point. To this end, the client creates
a tunnel to the rendezvous point and sets local port
forwarding to another port rp1 on the rendezvous point
(ssh -L cp3:localhost:rp1 localhost -p cp2).
The client connects to a randomly chosen introduction
point of the hidden service, informing about the

proposed rendezvous point’s address and port rp1

which will be used to join the connections. The
hidden service connects to the rendezvous point of
the client using reverse port forwarding on the port rp1,
(ssh -R rp1:localhost:hp3 localhost -p hp2).
After the circuits have been joined, the
client initiates an additional SSH handshake
with the hidden service through the tunnel
(ssh -L cp4:localhost:hp4 localhost -p cp3).
The latter provides the end-to-end security for the
connection (note that checking the certificate of the hidden
service via SSH is only possible if the connection is
originated from the client).

V. EVALUATION

This section presents an evaluation of SOR with the
most relevant performance measures, such as bandwidth,
circuit buildup time, and latency. Our experiments have
been carried out in a fully controlled lab network and in
the Planetlab testbed [25]. In the following we compare
our approach to Tor – the state-of-the-art anonymization
network. In addition, we also evaluated the performance of
the hidden service protocol of SOR and Tor. For this purpose
a private Tor network has been set up and TorFlow [26] and
TorCtl4 frameworks were used to obtain the measurements.

A. Experiment Setup

The most relevant performance metrics for anonymization
network are the RTT, circuit buildup time, and the achievable
bandwidth. A circuit length of three is chosen for the
evaluation. This is the standard length for Tor and other
onion routing based approaches. To obtain stable results,
the tests run were repeated 10,000 times.

1) Laboratory Experiment: The machines in the lab
network were equipped with a 2.33 GHz Quad Core Xeon
CPUs, 4GB of RAM, and a 1GBit Ethernet connection. Each
node respectively runs a Tor or SOR process. An additional
machine is used to perform the measurements. With respect
to comparing two network anonymization protocols, choos-
ing an environment which can be fully controlled and which
does not exhibit any other resource consumption allows an
evaluation in which close to no other effects can influence
the protocol’s performance.

Figure 2 (left) shows a direct median comparison (whisker
bars represent the standard deviation from the median) of
SOR and Tor in the local lab network with respect to sender
anonymity. As it can be seen, the RTT in SOR is about a
half of the RTT on Tor. Creating a SOR circuit (Buildup)
takes longer than creating a Tor circuit. Tor outperforms
SOR as it uses already established TCP/TLS connection
between the nodes while creating a circuit. If one compares
the circuit setup results in the System-Ready experiment, this

4PyTorCtl: https://gitweb.torproject.org/pytorctl.git



 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

RTT Circuit System-Ready Bandwidth
 0

 100

 200

 300

 400

 500

 600

T
im

e
 [

m
s
]

T
h

ro
u

g
h

p
u

t 
[M

b
p

s
]

SOR vs. Tor in Lab Network

Sor

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

RTT Circuit System-Ready Bandwidth
 0

 100

 200

 300

 400

 500

 600

T
im

e
 [

m
s
]

T
h

ro
u

g
h

p
u

t 
[M

b
p

s
]

SOR vs. Tor in Lab Network

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

RTT Circuit System-Ready Bandwidth
 0

 100

 200

 300

 400

 500

 600

T
im

e
 [

m
s
]

T
h

ro
u

g
h

p
u

t 
[M

b
p

s
]

SOR vs. Tor in Lab Network

Tor

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

RTT Circuit System-Ready Bandwidth
 0

 100

 200

 300

 400

 500

 600

T
im

e
 [

m
s
]

T
h

ro
u

g
h

p
u

t 
[M

b
p

s
]

SOR vs. Tor in Lab Network

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

RTT Circuit System-Ready Bandwidth
 0

 100

 200

 300

 400

 500

 600

T
im

e
 [

m
s
]

T
h

ro
u

g
h

p
u

t 
[M

b
p

s
]

SOR vs. Tor in Lab Network

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

RTT Circuit System-Ready Bandwidth
 0

 100

 200

 300

 400

 500

 600

T
im

e
 [

m
s
]

T
h

ro
u

g
h

p
u

t 
[M

b
p

s
]

SOR vs. Tor in Lab Network

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

RTT Circuit System-Ready Bandwidth
 0

 100

 200

 300

 400

 500

 600

T
im

e
 [

m
s
]

T
h

ro
u

g
h

p
u

t 
[M

b
p

s
]

SOR vs. Tor in Lab Network

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

RTT Circuit System-Ready Bandwidth
 0

 100

 200

 300

 400

 500

 600

T
im

e
 [

m
s
]

T
h

ro
u

g
h

p
u

t 
[M

b
p

s
]

SOR vs. Tor in Lab Network

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

RTT Circuit System-Ready Bandwidth
 0

 100

 200

 300

 400

 500

 600

T
im

e
 [

m
s
]

T
h

ro
u

g
h

p
u

t 
[M

b
p

s
]

SOR vs. Tor in Lab Network

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

RTT Circuit System-Ready Bandwidth
 0

 100

 200

 300

 400

 500

 600

T
im

e
 [

m
s
]

T
h

ro
u

g
h

p
u

t 
[M

b
p

s
]

SOR vs. Tor in Lab Network

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

RTT Circuit System-Ready Bandwidth
 0

 100

 200

 300

 400

 500

 600

T
im

e
 [

m
s
]

T
h

ro
u

g
h

p
u

t 
[M

b
p

s
]

SOR vs. Tor in Lab Network

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

RTT Circuit System-Ready Bandwidth
 0

 100

 200

 300

 400

 500

 600

T
im

e
 [

m
s
]

T
h

ro
u

g
h

p
u

t 
[M

b
p

s
]

SOR vs. Tor in Lab Network

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

RTT Circuit System-Ready Bandwidth
 0

 100

 200

 300

 400

 500

 600

T
im

e
 [

m
s
]

T
h

ro
u

g
h

p
u

t 
[M

b
p

s
]

SOR vs. Tor in Lab Network

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

RTT Circuit System-Ready Bandwidth
 0

 100

 200

 300

 400

 500

 600

T
im

e
 [

m
s
]

T
h

ro
u

g
h

p
u

t 
[M

b
p

s
]

SOR vs. Tor in Lab Network

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

RTT Circuit System-Ready Bandwidth
 0

 100

 200

 300

 400

 500

 600

T
im

e
 [

m
s
]

T
h

ro
u

g
h

p
u

t 
[M

b
p

s
]

SOR vs. Tor in Lab Network

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

RTT Circuit System-Ready Bandwidth
 0

 100

 200

 300

 400

 500

 600

T
im

e
 [

m
s
]

T
h

ro
u

g
h

p
u

t 
[M

b
p

s
]

SOR vs. Tor in Lab Network

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 3400

RTT Buildup Bandwidth
 0

 50

 100

 150

 200

 250

 300

 350

T
im

e
 [

m
s
]

T
h

ro
u

g
h

p
u

t 
[M

b
p

s
]

SOR vs. Tor Hidden Service in Lab Network

Sor

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 3400

RTT Buildup Bandwidth
 0

 50

 100

 150

 200

 250

 300

 350

T
im

e
 [

m
s
]

T
h

ro
u

g
h

p
u

t 
[M

b
p

s
]

SOR vs. Tor Hidden Service in Lab Network

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 3400

RTT Buildup Bandwidth
 0

 50

 100

 150

 200

 250

 300

 350

T
im

e
 [

m
s
]

T
h

ro
u

g
h

p
u

t 
[M

b
p

s
]

SOR vs. Tor Hidden Service in Lab Network

Tor

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 3400

RTT Buildup Bandwidth
 0

 50

 100

 150

 200

 250

 300

 350

T
im

e
 [

m
s
]

T
h

ro
u

g
h

p
u

t 
[M

b
p

s
]

SOR vs. Tor Hidden Service in Lab Network

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 3400

RTT Buildup Bandwidth
 0

 50

 100

 150

 200

 250

 300

 350

T
im

e
 [

m
s
]

T
h

ro
u

g
h

p
u

t 
[M

b
p

s
]

SOR vs. Tor Hidden Service in Lab Network

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 3400

RTT Buildup Bandwidth
 0

 50

 100

 150

 200

 250

 300

 350

T
im

e
 [

m
s
]

T
h

ro
u

g
h

p
u

t 
[M

b
p

s
]

SOR vs. Tor Hidden Service in Lab Network

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 3400

RTT Buildup Bandwidth
 0

 50

 100

 150

 200

 250

 300

 350

T
im

e
 [

m
s
]

T
h

ro
u

g
h

p
u

t 
[M

b
p

s
]

SOR vs. Tor Hidden Service in Lab Network

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 3400

RTT Buildup Bandwidth
 0

 50

 100

 150

 200

 250

 300

 350

T
im

e
 [

m
s
]

T
h

ro
u

g
h

p
u

t 
[M

b
p

s
]

SOR vs. Tor Hidden Service in Lab Network

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 3400

RTT Buildup Bandwidth
 0

 50

 100

 150

 200

 250

 300

 350

T
im

e
 [

m
s
]

T
h

ro
u

g
h

p
u

t 
[M

b
p

s
]

SOR vs. Tor Hidden Service in Lab Network

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 3400

RTT Buildup Bandwidth
 0

 50

 100

 150

 200

 250

 300

 350

T
im

e
 [

m
s
]

T
h

ro
u

g
h

p
u

t 
[M

b
p

s
]

SOR vs. Tor Hidden Service in Lab Network

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 3400

RTT Buildup Bandwidth
 0

 50

 100

 150

 200

 250

 300

 350

T
im

e
 [

m
s
]

T
h

ro
u

g
h

p
u

t 
[M

b
p

s
]

SOR vs. Tor Hidden Service in Lab Network

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 3400

RTT Buildup Bandwidth
 0

 50

 100

 150

 200

 250

 300

 350

T
im

e
 [

m
s
]

T
h

ro
u

g
h

p
u

t 
[M

b
p

s
]

SOR vs. Tor Hidden Service in Lab Network

Figure 2. Left: SOR vs. Tor Performance (Median) / Right: SOR vs. Tor Hidden Service Performance (Median)

observation becomes obvious. System-Ready represents the
duration until the anonymization system is ready to be used,
i.e., circuits are available. It can be seen that Tor spends a
significant amount of time establishing TLS connections to
ORs in order to speedup the circuit setup afterwards. The
most impressive result is that SOR outperforms Tor in terms
of bandwidth by a factor of nine. We suppose that this
difference is due to a mature and performance optimized
implementation of SSH.

Figure 2 (right) shows the results of the hidden service
performance of SOR and Tor as median (whisker bars
represent the standard deviation from the median). The
measurements have been obtained from a client connecting
to a hidden service. It can be seen that the RTT is only
slightly influenced by the increased circuit length from client
to the hidden service. Buildup represents the time it takes
for client so successfully establish a connection to a hidden
service. Tor outperforms SOR by a factor of two. This
observation can by explained by the fine tuned connection
protocol of Tor. For example, one half of the Diffie-Hellman
handshake between the client and the hidden service is
already done when the clients request a connection via one
of the introduction points. SOR has no such mechanism
as it relies on SSH, i.e., the end-to-end encryption is only
negotiated after the rendezvous point joined the circuits of
the client and the hidden service. Also, Tor keeps known
ORs cached in order to more quickly be able to create new
circuits (SOR contacts each time the directory for fetching
ORs information). Once the caching is disabled, establishing
a connection to a hidden service in Tor takes significantly
longer. With respect to the bandwidth SOR outperforms
Tor significantly. Compared to the bandwidth achievable via
regular circuits, the bandwidth achievable from a client to a
hidden service is only slightly reduced.

SOR requires about 2.7 seconds to make a hidden service
available to the network. This includes creating circuits to

the introduction points and publishing the descriptor to the
directory. Tor requires about 32 seconds until the hidden
service is available to clients. The increase in time is possibly
due to the more complex publishing mechanisms of the Tor
directories.

2) Planetlab Experiment: Planetlab nodes5 have to meet
minimal requirements, i.e., have four cores CPU at 2.4GHz
and 4GB of RAM. With respect to the network connection,
nodes can be as slow as DSL lines. However, during our
evaluation we observed a curiosity. The achievable band-
width through a SOR-Circuit was in fact higher than the
bandwidth to the node not using a SOR-Circuit. Since the
Planetlab nodes are managed using SSH, we suspect that
SSH is prioritized and gets higher amount of resources
allocated to it. Moreover, it is questionable whether the
results of network performance measurements in Planetlab
can be compared. The resource usage, including CPU and
networking, differs at any given time for any given node.
This makes is hard to exactly reproduce the experiment
setting when comparing the performance of two protocols.
It has been shown that the resource consumption of nodes
has great influence on the available performance of circuits
in Planetlab [27]. Hence, we refrained from the comparison
in PlanetLab. Hence, in our case measurements in Planetlab
are less suited for a fair network performance comparison.

VI. DISCUSSION

In this section we elaborate on a selection of challenges
and security implications that we encountered during the
design of SOR.

A. User Account Privileges

The primary use case of SSH is secure shell access on
remote machines. As such, the notion of user accounts is
deeply woven into the protocol and its implementations.

5http://www.planet-lab.org/node/225



One possibility to implement anonymization protocol using
SSH on the server side is to allow empty passwords. This
is however a critical security risk as it may allow logins for
accounts accidentally set to an empty password. In order
to make convenient usage of SSH user accounts in SOR,
we propose to employ a single public/private key pair for
the authentication of SOR users on all of the servers. The
key can be distributed, e.g., together with the SOR software.
Using only one single key pair for all the users is necessary
since otherwise SOR users could be differentiated based on
their personal public/private key.

Still, providing a user account to unknown and un-
trustworthy third-parties is a security risk. Therefore, we
suggest to set no-pty for the users’ public key in SSH’s
authorized keys file and specify the shell to, e.g., /bin/false.
Setting no-pty itself does not prevent ssh command execu-
tion. The combination of both options, however, prevents the
allocation of interactive sessions and command execution for
the SOR users.

B. Exit Policies

In Section IV we discussed how SOR realizes the concept
of exit nodes. The main purpose of exit nodes is to allow
traffic to leave the anonymization overlay to any destination
on the Internet. Therefore the operators of exit nodes are in
the first instance responsible for any abuse that is done using
their nodes, which can be a legal risk in some countries.
Hence, it is important to restrict this type connections and
traffic that may leave the network via an exit node. Tor has
addressed this issue with exit policies that can be specified
by the node owners.

Unfortunately, SSH itself does not provide filtering mech-
anisms for dynamic outgoing connections. Even separately
disabling port forwarding modes (local, dynamic, remote) is
not possible in the vanilla SSH implementation. Currently
it is therefore only possible to restrict exits either by
firewalling mechanisms (e.g., using user space applications
such as iptables) or using a custom restricted user shell for
filtering connections.

C. Host Key Checking

SSH provides a mechanism to authenticate the server
to the client based on the server’s host key. This is done
by the SSH client when connecting to a SSH server in
order to protect against man-in-the-middle attacks. If the
key fingerprint of the server is known to the client, i.e., it
has previously connected to this server or the fingerprint
is inserted from the descriptor of the server, comparing the
key fingerprint to the cached one will determine if the server
is the authentic one. The host key checking also compares
the IP address and port mapping to the host key. The SOR
client has to intelligently manage this mapping as it will
frequently change for middle and exit nodes. This is due
to the fact that connections to middle and exit nodes are

established through a port on local host in order to tunnel
through previously established connections (see Section IV).
Hence, our SOR client maintains a dynamic known hosts file
during the construction of circuits.

VII. FUTURE WORK

As stated in Section VI-A restricting the interactive access
of the user to SOR routers is of great importance. In the
future work we will explore whether developing a custom
shell has signification benefits over using standard Linux
tools to achieve a similar level of security. Moreover, we
will investigate ways to implement the policy restrictions
of exit nodes. In addition to jailing the user, the algo-
rithms used by SSH need to be tightly controlled. Clients
connecting to SOR routers using different cryptographic
algorithms for authentication, encryption, and data integrity
protection, are potentially vulnerable to being deanonymized
based on these connection properties (e.g., clients having a
unique configuration). For improving performance, we plan
to investigate advanced methods for path selection in onion
routing such as [9]. Furthermore, we plan to develop a SOR
client in alternative programming languages. Currently the
controller logic of SOR client is implemented using the
Ruby programming language.

VIII. CONCLUSION

In this paper we introduced SOR – a novel approach
for anonymization that is purely based on standardized,
tested, and performance-tuned protocols. It utilizes out-of-
the-box nested SSH connections to achieve state-of-the-art
anonymization based on onion routing. Contrary to Shalon
– another work that achieves anonymization using standard-
ized protocols, our approach supports both sender and re-
ceiver anonymity. Besides of many audited implementations,
the SSH protocol itself is mature and has been thoroughly
analyzed with respect to security issues. The results of
our evaluation show that our approach outperforms existing
alternatives by a factor of up to nine without sacrificing the
degree of anonymity.

ACKNOWLEDGMENTS

This work has been supported by the UMIC Research
Centre of RWTH Aachen University and the National Re-
search Fund of Luxembourg within the CORE grant project
MOVE and EU FP7 PPP project OUTSMART. Thanks to
Mark Schlösser who sparked our interest in the initial idea
of this work. Also thanks to Fabian Lanze who provided
insight into the Tor control protocol.

REFERENCES

[1] O. Berthold, H. Federrath, and S. Köpsell, “Web MIXes: A
System for Anonymous and Unobservable Internet Access,”
in Proceedings of Designing Privacy Enhancing Technolo-
gies: Workshop on Design Issues in Anonymity and Unobserv-
ability, ser. Lecture Notes in Computer Science, H. Federrath,
Ed., vol. 2009. Springer-Verlag, Jul. 2000, pp. 115–129.



[2] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The
Second-Generation Onion Router,” in Proceedings of the 13th
USENIX Security Symposium. USENIX Association, Aug.
2004, pp. 303–320.

[3] R. Dingledine and N. Mathewson, “Tor Directory Protocol
Specification,”
https://www.torproject.org/svn/trunk/doc/spec/dir-spec.txt.

[4] R. Wendolsky, D. Herrmann, and H. Federrath, “Performance
Comparison of low-latency Anonymisation Services from a
User Perspective,” in Proceedings of the Seventh Workshop
on Privacy Enhancing Technologies (PET 2007), ser. Lecture
Notes in Computer Science, N. Borisov and P. Golle, Eds.,
vol. 4776. Springer-Verlag, Jun. 2007, pp. 233–253.

[5] S. Köpsell, “Low Latency Anonymous Communication –
How Long Are Users Willing to Wait?” in Emerging Trends in
Information and Communication Security, ser. Lecture Notes
in Computer Science, G. Müller, Ed., vol. 3995. Springer-
Verlag, Jun. 2006, pp. 221–237.

[6] A. Panchenko, L. Pimenidis, and J. Renner, “Performance
Analysis of Anonymous Communication Channels Provided
by Tor,” in Proceedings of the Third International Confer-
ence on Availability, Reliability and Security (ARES 2008).
Barcelona, Spain: IEEE Computer Society Press, March 2008.

[7] R. Snader and N. Borisov, “A Tune-up for Tor: Improving
Security and Performance in the Tor Network,” in Proceed-
ings of the Network and Distributed Security Symposium -
NDSS ’08. Internet Society, February 2008.

[8] S. J. Murdoch and R. N. Watson, “Metrics for Security and
Performance in Low-Latency Anonymity Systems,” in Pro-
ceedings of the Eighth International Symposium on Privacy
Enhancing Technologies (PETS 2008), ser. Lecture Notes in
Computer Science, N. Borisov and I. Goldberg, Eds., vol.
5134. Springer-Verlag, Jul. 2008, pp. 115–132.

[9] A. Panchenko and J. Renner, “Path Selection Metrics for
Performance-Improved Onion Routing,” in Proceedings of the
9th IEEE/IPSJ Symposium on Applications and the Internet
(IEEE SAINT 2009). Seattle, USA: IEEE Computer Society
Press, July 2009.

[10] “Tor Network Status,” https://torstatus.kgprog.com/.

[11] P. Palfrader, “Number of Running Tor Routers.” [Online].
Available: http://torstatus.blutmagie.de/

[12] K. Loesing, W. Sandmann, C. Wilms, and G. Wirtz, “Perfor-
mance Measurements and Statistics of Tor Hidden Services,”
in Proceedings of the 2008 International Symposium on
Applications and the Internet (SAINT). Turku, Finland: IEEE
CS Press, July 2008.

[13] “I2P project,” http://www.i2p.net/, 2009, visited May 2009.

[14] Ian Clarke, O. Sandberg, B. Wiley, and T. W. Hong, “Freenet:
A Distributed Anonymous Information Storage and Retrieval
System,” in Proceedings of Designing Privacy Enhancing
Technologies: Workshop on Design Issues in Anonymity and
Unobservability, July 2000, pp. 46–66.

[15] M. K. Reiter and A. D. Rubin, “Crowds: Anonymity for Web
Transactions,” ACM Transactions on Information and System
Security, pp. 66 – 92, April 1998.

[16] K. Bennett and C. Grothoff, “GAP – practical anonymous net-
working,” in Proceedings of Privacy Enhancing Technologies
workshop (PET 2003), R. Dingledine, Ed. Springer-Verlag,
LNCS 2760, March 2003, pp. 141–160.

[17] M. Wright, M. Adler, B. N. Levine, and C. Shields, “The
Predecessor Attack: An Analysis of a Threat to Anonymous
Communications Systems,” in ACM Transactions on Infor-
mation and System Security TISSEC’04, vol. 7 (4). ACM
Press, November 2004, pp. 489 – 522.

[18] A. Panchenko and L. Pimenidis, “Crowds Revisited: Prac-
tically Effective Predecessor Attack,” in Proceedings of the
12th Nordic Workshop on Secure IT-Systems (NordSec 2007),
Reykjavik, Iceland, October 2007.

[19] D. L. Chaum, “The Dining Cryptographers Problem: Un-
conditional Sender and Recipient Untraceability,” Journal of
Cryptology, no. 1, pp. 65 – 75, 1988.

[20] R. Sherwood, B. Bhattacharjee, and A. Srinivasan, “P5:
A Protocol for Scalable Anonymous Communication,” in
Proceedings of the 2002 IEEE Symposium on Security and
Privacy, May 2002.

[21] S. Goel, M. Robson, M. Polte, and E. G. Sirer, “Herbivore: A
Scalable and Efficient Protocol for Anonymous Communica-
tion,” Cornell University, Ithaca, NY, Tech. Rep. 2003-1890,
February 2003.

[22] A. Panchenko, B. Westermann, L. Pimenidis, and C. Anders-
son, “Shalon: Lightweight anonymization based on open stan-
dards,” in Proceedings of the 18th International Conference
on Computer Communications and Networks (IEEE ICCCN
2009). IEEE Computer Society Press, Aug. 2009.

[23] A. Panchenko, O. Spaniol, A. Egners, and T. Engel,
“Lightweight hidden services,” in 10th IEEE International
Conference on Trust, Security and Privacy in Computing and
Communications (IEEE TrustCom 2011). Changsha, China:
IEEE Computer Society Press, Nov. 2011.

[24] E. T. Ylonen, C. Lonvick, “The Secure Shell (SSH) Protocol
Architecture,” RFC, January 2006. [Online]. Available:
http://www.ietf.org/rfc/rfc4251.txt

[25] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman, “PlanetLab: An Overlay
Testbed for Broad-coverage Services,” SIGCOMM Comput.
Commun. Rev., vol. 33, no. 3, pp. 3–12, 2003.

[26] M. Perry, “Torflow: Tor network analysis,” http://fscked.org/
talks/TorFlow-HotPETS-final.pdf.

[27] A. Panchenko, “Anonymous communication in the age of the
internet,” Ph.D. dissertation, Department of Computer Sci-
ence, RWTH Aachen University, 2010, wissenschaftsverlag
Mainz, Aachen.


