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ABSTRACT
The only available IEEE 802.11 network identifiers (i. e., the
network name and the MAC address) can be easily spoofed.
Consequently, an attacker is able to fake a real hotspot and
attract its traffic. By this means, the attacker can intercept,
collect, or change users’ traffic (often even if it is encrypted).

In this paper, we describe an efficient method for detect-
ing the replacement of access points (APs) by passive re-
mote physical device fingerprinting. The main feature of our
fingerprinting approach is the clock skew—an unavoidable
phenomenon that causes clocks to run at minuscule yet re-
motely observable different speeds—which is extracted from
information contained in beacon frames. We are the first
to achieve a high discriminability of devices by completely
eliminating the fingerprinters’ influence and considering the
clock skew’s dependency on temperature.

Finally, we develop a method for reliable detection of the
presence of AP impostors that works without explicit tem-
perature information. Compared to the best state-of-the-
art approach, our method improves detection accuracy from
about 30 % to 90 % without generating any traffic and re-
quires less than one minute to collect a sufficient number
of observations. Our approach yields a strong feature for
passive remote physical device fingerprinting in wireless net-
works.

Categories and Subject Descriptors
C.2.0 [COMPUTER-COMMUNICATION
NETWORKS]: General—Security and protection; C.2.3
[COMPUTER-COMMUNICATION NETWORKS]:
Network Operations—Public networks

Keywords
Evil Twin Attack; Security; Wireless Access Point; Fake
Access Point; 802.11; Device Fingerprinting; Clock Skew
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1. INTRODUCTION
In recent years, Internet usage shifted from fixed locations

to mobile environments. Nowadays, people are used to be-
ing online all the time, independent of their location, using
laptops, smartphones, or tablets. Wi-Fi access points (APs)
offer fast and cost-effective Internet connectivity. They are
available almost everywhere, in offices, on university cam-
puses, and in public places such as cafés, shopping malls,
hotels, or airports. Although mobile cellular networks (e. g.,
3G) have gained an increasing influence, the importance of
Wi-Fi networks remains crucial. Generally, they provide
faster connectivity, offer service whenever mobile networks
are unavailable, overloaded, or overpriced (e. g., in roam-
ing). They are indispensable for devices that do not have
hardware to access mobile cellular networks, e. g., laptops or
many tablets.

The only identifiers provided by the IEEE 801.11 stan-
dard for a user to verify the authenticity of an AP are its
SSID (i. e., the network name) and its BSSID (i. e., the MAC
address). Since these can easily be spoofed, an attacker is
able to fake an AP without the user being able to notice (in
the literature/media, this attack is also know as evil twin
[23, 9] and has gained recent attention1).

Once a user is connected to a faked AP, the attacker can
mount various attacks, including interception, collection, or
manipulation of transmitted data. This even remains pos-
sible if the user explicitly enables encryption, e. g., by using
SSL. Since the attacker already established his AP as in-
termediary, he can easily act as man-in-the-middle. Nowa-
days, this does not require special skills as deployable tools
such as SSLstrip2 (which transparently removes SSL encryp-
tion) and BurpProxy3 (which can create faked certificates
on-the-fly) are freely available and easy to use. Since most
users incautiously accept unsigned or wrongly-signed SSL
certificates [26, 6], malicious access points are able to con-
duct man-in-the-middle attacks on encrypted traffic (i. e.,
can read and modify the data) and to hijack sessions.

The danger of the described attacks arises from their sim-
plicity: All common mobile operating systems including An-
droid and iOS are capable of creating a wireless AP. Hence,
this process can be be performed directly from smartphones,

1http://www.abc15.com/dpp/money/consumer/alerts/
alert-thieves-create-fake-hotel-wi-fi-hot-spots-
to-steal-your-information
2http://www.thoughtcrime.org/software/sslstrip/
3http://portswigger.net/burp/proxy.html
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without attracting the attention of anybody in the vicinity.
Additionally, fully-automated tools are available that are ca-
pable of spoofing APs, e. g., rfakeap4, airsnarf 5, jasager6.

Hence, we focus on attackers who mount short-duration
evil twin attacks by using off-the-shelf hardware. Scenar-
ios where an attacker needs to extensively modify hardware
components are therefore out of the scope of this work.

The methods described in the 802.11 Robust Secure Net-
work Association (RSNA) specification propose to solve this
problem with cryptographic primitives using an additional
authentication server [14]. This requires careful setup and
maintenance. Operators of open hotspots in particular have
no incentive to deploy such a mechanism and, hence, the
solution is rarely used. The usage of virtual private net-
works (VPNs) also does not provide a satisfactory solution
to the problem as, besides similar certificate-based attacks
like those on SSL, it is possible to kill the VPN session (e. g.,
by dropping management packets) so that the connection
falls back to plain mode, typically without explicit notifica-
tion.

Many public hotspots deploy a web-based authentication
scheme which is additionally used for accounting of clients.
Nevertheless, such a mechanism does not provide any secu-
rity for the user at all. The attacker could simply clone the
login page and accept any credentials. Furthermore the at-
tacker learns the legitimate credentials provided by users for
further misuse. If pre-shared key (PSK) based encryption
(such as WPA) is applied and the attacker knows the PSK,
he can still mount the attack. Note that for public hotspots
the PSK must be distributed to clients by some means or
another (e. g., on a receipt).

Therefore, there is a strong need to equip users with ad-
ditional tools and methods for verification of the APs they
connect to, in order to make sure that these are authen-
tic and not traps operated by an attacker. In our targeted
solution, a user has access to a trusted third party that ver-
ifies the fingerprint of an authentic hotspot. Consequently,
there is a vital necessity for tools that enable remote device
identification and can be applied to currently deployed net-
works without modifying standardized protocols and with-
out requiring the AP operator to cooperate or modify the
deployment.

In this paper, we focus on remote device fingerprinting
based on clock skews. This is an unavoidable physical phe-
nomenon that causes crystal oscillator based clocks to run
with minuscule yet measurable deviations in speed. The fre-
quencies of crystal oscillators are determined by their man-
ufacturing properties (e. g., the cut angle) and the crystal
type. Inevitable inaccuracies during the production process
lead to slight variations of the frequency, even for crystals
produced within the same series [11].

Clock skew is based purely on physical properties, which
makes it an attractive feature for physical device fingerprint-
ing. It is typically measured in parts per million (ppm).

For measuring the clock skew of a remote clock, it is es-
sential to have access to precise timestamps generated by
that clock. In the Wi-Fi scenario we benefit from the fact
that APs emit management frames (called beacons) at a high
frequency. These frames contain a high-precision timestamp

4http://rfakeap.tuxfamily.org/
5http://airsnarf.shmoo.com/
6http://www.digininja.org/jasager/

with microsecond resolution, which is used for the Timing
Synchronization Function (TSF) to synchronize sending and
receiving slots on the shared wireless medium in the IEEE
802.11 communication process. All stations in a basic service
set (BSS), i. e., all clients associated with an AP, synchro-
nize their local TSF timer to the time broadcasted in bea-
con frames. Beacon frames are usually sent every 100 ms.
By specification, they are not subject to any delay before
sending. Therefore, they serve as a reliable basis for clock
skew estimation.

Contribution:
We present a novel approach to reliably detect a spoofed
access point utilizing the fact that, in general, other APs
are simultaneously reachable in the vicinity. In detail, our
contributions are as follows:

• We are the first to intensively study the influence of
changing room temperatures on APs’ clock skews in
the context of fingerprinting. As we will show, APs
exhibit significantly different temperature dependency
characteristics. By learning these, the discriminability
of clock-skew-based fingerprints (in terms of recogni-
tion interval sizes) can be improved by more than 75 %.

• We completely eliminate the influence of the finger-
printer (both skew and its dependency on tempera-
ture) on the fingerprint. This allows comparison of
fingerprints produced by arbitrary fingerprinters. We
substantiate this claim mathematically.

• We develop a method for fake AP detection which ex-
ploits temperature dependency without the need for
explicit temperature knowledge and which provides sim-
ilar accuracy. Here, a manageably small number of
around 50 training observations is sufficient.

• Finally, we are the first to propose a practical solution
to detect faked APs with a high probability.

2. RELATED WORK
Due to the severity of the underlying problem, the field of

remote physical device fingerprinting has attracted consid-
erable research interest in recent years and several methods
have been proposed. We distinguish between active and pas-
sive techniques.

Active techniques explicitly interact with the device that
is fingerprinted, e. g., by sending regular or manipulated
packets and evaluating the response. Inherently, such meth-
ods can be detected by the fingerprintee or even cause in-
terference with the regular communication. Sieka [25] eval-
uates timing patterns in the authentication procedure of an
AP using two different measuring devices for fingerprinting.
Bratus et al. [3] propose a technique called active behav-
ioral fingerprinting, which is based on malformed stimuli
response, i. e., how devices react to non-standard and mal-
formed 802.11 frames.

Passive methods, on the other hand, do not require any
cooperation with other nodes as they merely observe pass-
ing traffic without interaction or modification. Hence, these
methods are by design undetectable and do not interfere
with the regular communication. Therefore, we direct our
focus to passive techniques.

http://rfakeap.tuxfamily.org/
http://airsnarf.shmoo.com/
http://www.digininja.org/jasager/


The accuracy of remote wireless device fingerprinting can
be optimized to more than 99 % if dedicated hardware is
applied. Using, e. g., radio frequency fingerprinting (RFF)
[24, 10, 4] such techniques investigate physical properties
of the radio signal with specialized measurement devices.
However, these methods are not applicable in our context
as we target methods that work on regular mobile clients,
which are not equipped with such hardware.

Another class of passive approaches does not aim to iden-
tify unique devices (APs) but rather unique device types [8]
or device driver types [7]. Those methods do not satisfy our
requirement of differentiating between APs with the same
hardware and firmware.

Bahl et al. [2] identify the presence of two APs with the
same BSSID. The method uses sequence numbers in 802.11
frame headers but is not able to recognize which of the APs
is faked and is only applicable if both APs are active simulta-
neously in a nearby location. Gonzales et al. [9] present two
methods to protect against the evil twin attack. The first
method (EAP-SWAT) requires modification of the deployed
authentication protocols which, in general, is undesirable as
all deployed APs would have to be adapted. The second
method (context-leashing) aims to detect whether the set
of simultaneously visible APs has significantly changed. It
achieves a comparably high detection accuracy. Note that
this method can only detect a specific variant of the attack,
where the evil twin AP is set up at a different location than
the legitimate AP. Neumann et al. [21] analyze fingerprints
based on network parameters such as transmission time and
frame inter-arrival time. The best recognition rates for wire-
less devices are 40%–60% in a laboratory setting and 20%–
32% in real-world traces.

A more promising field of research for wireless fingerprint-
ing utilizes the phenomenon called clock skew. Originating
from the work of Moon et al. [20], Kohno et al. [17] intro-
duce the concept of clock skew based remote device finger-
printing using the TCP Timestamps option in TCP head-
ers [13] or ICMP packets, both having timing resolution in
milliseconds. They estimate the clock skew with linear pro-
gramming (LP). Clock skews are shown to be distinguishable
among different physical machines yet stable over time. The
approach requires support of the timestamp option and ob-
serving a TCP connection or ICMP packets over a longer
period of time, while wireless APs cannot be directly ac-
cessed via TCP/ICMP in general.

In [27] clock-skew-based fingerprinting is applied to wire-
less sensor nodes (WSN). The results are not comparable
to our work as the authors assume that the fingerprinter is
always the same (sink node) and can be kept in a constant
temperature environment. This does not hold true in our
scenario. Yang et al. [30] analyze the impact of temperature
on clock skew estimation to improve clock synchronization
for WSNs and the authors observe that two clocks exhibit
a stable relationship of clock skew w.r.t. temperature which
is not necessarily linear. This complies with our findings
regarding TSF clocks (see Section 6). However, unlike in
our scenario, for WSNs there is no necessity to model this
temperature dependency fingerprinter-independent.

Jana et al. [15] transfer the idea of Kohno et al. to the
802.11 scenario, estimating APs’ clock skews from TSF times-
tamps in beacon frames. Instead of the LP method the
authors use a least squares fit estimation (LSF), which is
more efficient but also more sensitive to outliers, since fewer

outliers compared to timestamps in TCP packets are to be
expected. Moreover, the use of TSF data requires signifi-
cantly smaller sample sizes due to higher clock resolution.
To measure the receiving time of a beacon frame, a modi-
fied driver is used. The authors argue that it is not possible
to fake the clock skew using software alone because of un-
predictable sending delays due to Medium Access Control.
In their work, fingerprints are not comparable between dif-
ferent fingerprinter machines (FPs) due to the influence of
the fingerprinting device’s own clock skew. Arackaparam-
bil et al. [1] improve the accuracy by utilizing the FP’s TSF
timer as more precise clock source. However, their technique
does not remove the skew of the fingerprinter card from the
clock skew estimation and is only evaluated with two Wi-Fi
chipsets of the same type. In our previous work [18], we pre-
sented a lightweight method for clock skew estimation based
on TSF timestamps in beacon frames using an online version
of the LSF estimation with high precision. Our tools do not
rely on modified drivers or system components and there-
fore enable clock skew estimation for APs from arbitrary
mobile clients. An NTP based method was presented to
eliminate the influence of the fingerprinter’s skew. However,
clock skew variations of approx. ±1ppm at different measur-
ing times remained. Our survey of 388 APs shows roughly a
normal distribution of clock skews within a range of −30 to
30 ppm. We concluded that the information content of clock
skews alone is too limited and unique device fingerprinting
using clock skews is not practically feasible for wireless ac-
cess points due to its limited distinctiveness. Note, however
that our evaluation did not consider the actual influence of
environmental conditions such as temperature.

In general, no approach for wireless device fingerprinting
has been able to identify 802.11 APs with acceptable de-
tection ratios, while being performed from arbitrary mobile
clients. We address this challenge and show that by includ-
ing temperature information and applying state-of-the-art
machine learning techniques, we are able to reliably detect
the presence of faked APs. Moreover, we completely ex-
clude the influence of the fingerprinter on the fingerprint.
Our method successfully detects the replacement of an AP
on a representative data set with an accuracy of 90%, thus,
60% better that the best approach known so far. This is
done without actively generating any traffic and requires
less than one minute to collect a sufficient number of obser-
vations.

3. CLOCK SKEW BACKGROUND
In this section, we describe physical and mathematical

background of clock skews in time measuring hardware.

3.1 Quartz Oscillator Fundamentals
Common computer clocks (and thus the ones that operate

the TSF timer in Wi-Fi chipsets) are based on crystal os-
cillators. The major component of a crystal oscillator is an
anisotropic crystal formed from SiO2 (quartz). Due to its
piezoelectric properties a mechanical strain is produced in
the crystal when exposed to an electric field. The resulting
vibration enables the crystal to be used as resonator in an os-
cillator unit that can generate clock signals. Although other
types of resonators exist, quartz has proven to be superior
regarding the properties frequency stability, intrinsic loss,
simplicity of production and cost. Hence, since many years,



quartz oscillators have been the preferred medium satisfying
the needs for precise frequency generation [16].

Crystal oscillator stability and accuracy is affected by
physical and electrical factors, with temperature being one
of the most significant. The dependency on temperature
is primarily determined by the angle at which the crystal
is cut with respect to the crystallographic axes during the
manufacturing process [29]. Most common is the AT-cut.
This crystal type exhibits a cubic dependency on temper-
ature [31]. The turning point of this cubic function and
the local extrema can be controlled by small variations of
the cut angle. The inflection point is typically located at
a temperature of 25 ◦C (77 ◦F) leading to highest stability
at typical operating temperatures. More than 90% of all
deployed crystal oscillators are based on an AT-cut crystal.

The described properties of crystal oscillators enable the
vendors of Wi-Fi chipsets to select units that meet given
specifications. For 802.11 devices, a frequency tolerance of
±25ppm is specified [12].

3.2 Mathematics of Clock Skews
We model (discretized) true time by the set Z of integers

with an arbitrarily chosen zero point and measured in arbi-
trarily chosen units. A clock counts time steps from a (pos-
sibly different) zero point, i. e., it is a function C : Z → Z,
giving the mapping from true time t to the time C(t) mea-
sured by the clock. Without loss of generality, we assume
that all clocks have the same time step resolution as the unit
chosen for true time—microseconds in our case7.

For an ideal clock, the difference C(t2)−C(t1) between two
time measurements at points t1 and t2 in true time would
always be t2 − t1. However, due to physical properties (see
Section 3.1), clocks based on crystal oscillators exhibit a
certain offset

offsetC(t1, t2) = [C(t2)− C(t1)]− [t2 − t1] (1)

when measuring such time intervals (positive if the clock is
too fast and negative if the clock is too slow). The skew sC
of a clock C between points t1 and t2 in true time is the
slope of the offset between these points:

sC(t1, t2) =
offsetC(t1, t2)

t2 − t1
=
C(t2)− C(t1)

t2 − t1
− 1 (2)

Typically, it is not possible to measure the clock skew
directly, since the fingerprinter’s clock has its own non-neg-
ligible skew. Hence, there are two clocks: the clock C of
the access point and the clock D of the fingerprinter. We
observe both at points t1 and t2 in true time and compute
a subjective offset

offsetD,C(t1, t2) = [C(t2)− C(t1)]− [D(t2)−D(t1)] (3)

and a subjective skew :

sD,C(t1, t2) =
offsetD,C(t1, t2)

D(t2)−D(t1)
=
C(t2)− C(t1)

D(t2)−D(t1)
− 1 (4)

Figure 1 shows the offsets of two different access point
clocks measured from two different fingerprinters at two dif-
ferent measuring times. The fingerprinters’ skews lead to
significantly different subjective skews for the same access
point clocks. Moreover, we observe a small difference for
the different measuring times.

7In fact, all clocks considered here, i. e., the TSF clock and
the system clock, have this resolution.
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Figure 1: Subjective offsets of the clocks of two dif-
ferent access points (C = AP1 and C = AP2) mea-
sured from two different fingerprinters (D = FP1 and
D = FP2) at two different measuring times (t0 = m0

and t0 = m1)

We can already see that (at least for short periods of
time—in the range of several minutes) the offsets increase
or decrease linearly. To overcome noise produced, e. g., by
the communication hardware and the device drivers, we not
only take the measurements at two border points (as in the
mathematical formulae), but use all available measurements
within a certain interval (several minutes for high preci-
sion). The skew is then approximated by the slope of a
least squares fit (LSF) linear regression over these measure-
ments. LSF has shown to be the superior method for the
slope estimation in the described setting [18, 15].

The goal of the following sections is to eliminate the influ-
ence of the fingerprinters and model the influence of temper-
ature on the access points in order to isolate the differences
between access points and use them as a fingerprint. But
first, we introduce our experimental setup and the resulting
data set in the next section.

4. DATA SET
In this section, we describe our experimental setup. Our

goal was to generate a representative data set containing
APs from various vendors and a variety of fingerprinter ma-
chines. Therefore, we placed twelve different physical APs—
2 AVM FritzBox 7050 (AP1–2), 1 LANCOM L-54G (AP3),
1 D-Link DAP-1360 (AP4), 2 Edimax EW-7228APn (AP5–
6), 4 Linksys WRT54GL (AP7–10) and 2 Netgear WG602v4
(AP11–12)—in a dedicated room, all operating on the same
channel (for simplicity of data collection). We induced dif-
ferent room temperatures by turning the heating off/on or
opening/closing the windows from time to time. We mea-
sured the room temperature with a Voltcraft DL-181THP
data logger. To measure the clock skew of the APs we used
four different fingerprinter machines. All were customary
laptops running Ubuntu 10.10. Beacons were sniffed using
the modified scapy library proposed in [18].

The experiment was performed over about four weeks.
The temperature conditions of our experimental environ-
ment are shown in Figure 2, and, as depicted cover all tem-
peratures that are typically to be expected in non-aircon-
ditioned indoor settings, i. e., between 17–27 ◦C. We de-
liberately created periods where the temperature remained
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Figure 2: Temperature variation over time

AP6 AP10 AP5 AP9 AP2 AP7 AP3 AP12 AP8 AP11 AP1 AP4
−15

−10

−5

0

5

10

C
lo

ck
sk

ew
[p

pm
]

Figure 3: Clock skews (NTP corrected) of the access
points in our data set

relatively stable over several days (e. g., weeks 1–2) as well as
others with multiple sudden temperature fluctuations (e. g.,
week 4).

We estimated the clock skew of the twelve APs from the
four FP machines for all consecutive intervals with a dura-
tion of ten minutes each using LSF linear regression. Note
that in practice much shorter intervals are feasible to obtain
precise clock skew approximations. With the online algo-
rithm for LSF proposed in [18], 30–80 seconds of beacon
sniffing would be enough to obtain a sufficiently small mar-
gin of error for the skew approximation. However, we refrain
from applying this method to achieve a very high accuracy.

The data logger measured the temperature with a speci-
fied accuracy of ±0.1 ◦C once per minute and we took the
mean of the ten measurements as the room temperature for
one estimation interval.

The distribution of the APs’ clock skews in our sample is
shown in the box plots of Figure 3. Here, we eliminated the
FP’s influence on the measurement using the NTP method
(described in more detail in the following section). As we
can see, most APs belong to groups of similar clock skews
(e. g., AP9, AP2, and AP7 or AP8 and AP11). Hence, even
in such a small sample of APs, there is already significant
confusion between the APs based on their clock skews. In
the following, we will show how to radically improve the
uniqueness of clock skew based fingerprints and, hence, the
discriminability of APs by considering the dependency of
the clock skew on temperature. But before that, we describe
how to eliminate the distortion caused by the fingerprinter.

5. FINGERPRINTER INFLUENCE
In this section, we briefly revisit the previously proposed

and, up to now, only available method for eliminating the in-
fluence of the fingerprinters’ own clock skews, i. e., the NTP
method [18]. It relies on an estimation of the fingerprint-
ers’ skews from a Network Time Protocol (NTP) service
running on the fingerprinters. We show why this approach
is insufficient for examining the dependency of clock skews
on temperature. We then introduce a novel approach, the
2AP method, which is based on the observation that the fin-
gerprinters’ skews are cancelled when calculating clock skew
differences between two measured access points. Hence, this
method eliminates the fingerprinter influence by design.

The NTP method is based on the observation that, after
rewriting equation (2) for the (objective) skews of access
point and fingerprinter to

C(t2)− C(t1) = [1 + sC(t1, t2)] · (t2 − t1) (5)

D(t2)−D(t1) = [1 + sD(t1, t2)] · (t2 − t1) (6)

and employing this substitution in the equation for subjec-
tive skew (4), we obtain:

sD,C(t1, t2) =
sC(t1, t2)− sD(t1, t2)

1 + sD(t1, t2)

≈ sC(t1, t2)− sD(t1, t2)

(7)

The last approximation holds since sD(t1, t2) is in the range
±30 ppm and, hence, division by 1+sD(t1, t2) will maximally
be relevant in the fifth significant digit.

We can rewrite this equation again to

sC(t1, t2) ≈ sD,C(t1, t2) + sD(t1, t2) (8)

and, thereby, have an expression of the (objective) skew of
C in terms of the subjective skew of C as seen by D and
(an approximation of) the (objective) skew of D. The lat-
ter is obtained from an NTP service running for 48 hours
on each FP. In the following, we will call all skew approx-
imations obtained according to this method NTP corrected
clock skews.

If we apply this correction of subjective skews to the exam-
ple from Figure 1, we obtain the situation shown in Figure 4.
We can see that the influence of the FPs’ clock skew is sig-
nificantly reduced, while the APs’ clock skew still diverges
substantially at different measuring times. The remaining
inaccuracies of the fingerprinter skew approximations (espe-
cially visible in the slightly different slopes at measuring time
m1) are due to the fact that the results are only corrected
by the average skew of the fingerprinters. This imprecision
is enough to render the NTP method inappropriate for ex-
amining temperature dependency, as will be shown below.

Our proposal to overcome this inaccuracy is to calculate
the difference between the subjective clock skews of two ac-
cess points measured at the same time. We utilize the fact
that Wi-Fi hotspots are rarely alone in their coverage area.
By performing the 2AP method, we completely remove the
influence of the fingerprinter. The difference between the
subjective skews of AP clocks C and C′ as measured by
FP clock D is equal to the difference of the corresponding
(objective) clock skews (except for practically irrelevant de-
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viations), similarly to (7):

sD,C(t1, t2)− sD,C′(t1, t2) =
sC(t1, t2)− sC′(t1, t2)

1 + sD(t1, t2)

≈ sC(t1, t2)− sC′(t1, t2).

(9)

Again, the last approximation holds since sD is in the range
±30 ppm and, hence, changes due to multiplication or divi-
sion by 1 + sD can be neglected.8 In the following, we call
all data obtained according to this method 2AP clock skew
differences, where we will without loss of generality always
subtract the subjective skew of the AP with the lexicograph-
ically greater MAC address from that of the other.

In Figure 5, the offset differences of the clocks from Fig-
ure 1 are shown. We observe that taking these differences
completely removes the influence of the fingerprinters’ cur-
rent skews and, hence, leads to values that are—in contrast
to the NTP corrected skew approximations—fully compara-
ble between different fingerprinters. The difference between
the different measuring times is still visible and our main
claim is that it is, to a large extent, due to the temperature
dependency of the access points’ clocks.

Using the 2AP method, we get meaningful values only
for pairs of access points. Hence, it is at first ambiguous
which of the two APs is responsible for a possible mismatch.
Still, the information provided is essential. If more than two
access points are visible then several or all possible pairs
can be examined and a faked access point should lead to
mismatches in significantly more of its pairs than the others.
Moreover, the sole presence of a faked access point might be
enough to render a whole environment untrustworthy or at
least suspicious.

In Figure 6, we show samples of clock skew measurements
as a function of temperature for two APs with the NTP
method and the corresponding pair for the 2AP method,
i. e., the approximate skews and skew differences in parts
per million (ppm) of our ten minute measuring intervals
are plotted over the average temperatures in these inter-
vals. Apparently, the FPs have very distinct dependencies

8Observe that this is, by equation (7), also approximately
equal to the subjective skew sC′,C(t1, t2) of access point C
as seen by access point C′. Similar observations concerning
clock skew arithmetic have been already made by Aracka-
parambil et al. [1], but not applied to eliminate fingerprinter
influence.
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Figure 5: Offset differences of 2AP method (between
C = AP1 and C′ = AP2) for subjective offsets from
Figure 1

on temperature leading to different distributions of the data
for the NTP method. These dependencies are intrinsic and
cannot be modeled independently of the fingerprinter. Be-
sides the variations caused by the FPs, the intrinsic temper-
ature dependency characteristics of the APs are also clearly
visible. As described above, for the 2AP method, only the
APs’ dependency on temperature remains, while the FPs’
dependency is completely eliminated. Therefore, the 2AP
method yields a fully fingerprinter-independent estimation
of the clock skew differences and can be used to further ex-
amine the temperature dependency of the APs’ clocks.

Accordingly, in the following section, we show how to
model the temperature dependency for the 2AP method in
order to drastically increase the fingerprinting accuracy. Fi-
nally, we will analyze the fake AP detection efficiency of our
methods.

6. TEMPERATURE DEPENDENCY
Theoretically, common crystal oscillators should exhibit a

cubic dependency on temperature (see Section 3.1). How-
ever, our practical observations do not confirm this assump-
tion. There are several possible reasons: Firstly, the cubic
dependency is to be expected for crystal oscillators against
the temperature of the crystal, while we measure the depen-
dency of TSF clock skews on room temperatures. The de-
pendency between room temperature and crystal tempera-
ture may be non-trivial, e. g., due to different (passive) cool-
ing behavior of the AP. Besides, the regarded temperatures
might cover only a small section of that cubic function. Sec-
ondly, there might be other physical influences that correlate
with temperature and change the frequency and, hence, the
skew. Thirdly, the crystals used in certain APs might not be
AT-cut crystals that exhibit this cubic dependency (or sub-
optimal quality of the cuts might lead to a deviation from
the theoretical properties).

Therefore, we use Gaussian process regression (GPR) [22],
a method that does not make any assumptions about the
underlying function and thus is suitable as a generic ap-
proach for modeling the dependency. The goal of our model
is to predict values f(x∗) of the clock skew difference of two
APs that is to be expected at a given room temperature
x∗. In general, a Gaussian process can represent f(x) indi-
rectly by considering the observed data. Each observation
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skew differences in relation to room temperature
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yi ∈ {y1, ..., yn} for an input xi is assumed to be a single
point sampled from a multivariate Gaussian distribution,
given by yi = f(xi) + ε, where ε ∼ N(0, σ2

n) is the additive
noise term. A Gaussian process, specified by its mean func-
tion m(x) (usually assumed to be zero) and the covariance
function k(xp, xq) can be used to define a prior over possi-
ble functions, f ∼ GP(m(x), k(xp, xq)). For the posterior
distribution, the prior is restricted to contain only functions
that meet the observed data. This is done by computing for
each test input x∗ a predictive mean f(x∗), which is a linear
combination of all training inputs and outputs built accord-
ing to the covariance function, and a predictive variance

V[f(x∗)], which only depends on the training inputs. GPR
is designed to interpolate predictions for unobserved inputs.
In practice, we have precomputed and stored the predictive
mean and predictive variance for all temperatures needed in
our evaluation with a granularity of 0.1 ◦C.

In our model, we use the squared-exponential covariance
function

k(xp, xq) = σ2
f exp

(
− 1

2`2
(xp − xq)2

)
+ σ2

nδpq

as it meets our requirements well: values whose inputs are
close get a higher influence on the prediction, while distant
observations have negligible effect; it is also infinitely differ-
entiable, leading to smoothness of the generated predictions.
It is parameterized by hyperparameters θ = (σ2

f , `, σ
2
n), where

σ2
f is the variance of the signal itself, ` is the length-scale

and σ2
n is the expected variance of measurement noise. We

estimate these hyperparameters by optimizing the marginal
likelihood on our training data. For a detailed description
we refer to Rasmussen and Williams [22].

Figure 7 shows examples for GPR applied to our data.
We can see that the predicted mean functions perfectly fit
our observed data. We verified that comparable predictions
can be obtained using much smaller samples of about 100
observations.

When using clock skews (or clock skew differences) as fin-
gerprints, suitable intervals for recognition (as shown in Fig-
ure 7) have to be defined due to the volatile nature of these
measures. In the following section, we provide a formal def-
inition of such recognition intervals.

7. EVALUATION OF PREDICTION
In this section, we first define recognition methods based

on the results described above. We then evaluate the accu-
racy of these methods regarding fake AP detection. Finally,
we provide an information theoretical perspective on tem-
perature dependency as a feature for fingerprinting.

7.1 Recognition Intervals
In order to provide recognition methods for APs, we spec-

ify appropriate acceptance intervals of observed data for all
considered methods. Regardless of the method, we classify
5% of our training data as outliers.

Therefore, we define this interval for the corrected skews
of the NTP method and for the skew differences of the 2AP
method as µ± 2σ, where µ is the mean and σ the standard
deviation of a normal distribution fitted to the training data.
The NTP method directly allows the recognition of an AP,
while the 2AP method needs at least one additional AP for
comparison (as described in Section 5).

To apply temperature dependent skew difference predic-
tions, we derive a new method, called 2AP-T, that em-
ploys Gaussian process regression (as described in the pre-
vious section). Here, the recognition interval is specified by

f(x∗)±2
√
V[f(x∗)], where f(x∗) is the predicted mean and

V[f(x∗)] the predicted variance of the corresponding GPR,
given the current room temperature x∗.

The properties of normal distribution and GPR ensure
that the recognition intervals comprise about 95% of the
training data.

To evaluate the discriminability of fingerprints generated
by these three methods, we calculated their average recog-
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Figure 7: Two examples for GPR: pointwise mean
prediction f(x) (±2

√
V[f(x)], corresponding to the

95 %-confidence region)

nition interval size. We obtained 1.73 ppm for the NTP
method, 1.56 ppm for the 2AP method and 0.41 ppm for the
2AP-T method. The results reveal that the temperature-
dependent prediction of the 2AP-T method improves fin-
gerprinting discriminability by more than 75% on average
compared to NTP. In the following, we examine how the
three methods perform in detecting whether an AP has been
replaced by an attacker.

7.2 Detection of Fake APs
We consider two attacker types: The näıve attacker has no

information on the original AP’s clock skew. He randomly
selects an available AP for the attack. Practically, we model
this attacker by replacing a considered AP with every other
AP in our data set and taking the mean success rate. The
intelligent attacker knows about the clock skews and the de-
tection method used. Thus, he is able to select the AP with
the clock skew closest to the original AP’s clock skew in our
data set as the replacement. Recall that we do not consider
attackers who perform extensive hardware modifications to
control the clock skew.

We divided our data into training and testing as follows:
all data was separated into four equally long time periods
(corresponding to approximately one week each). Training
was performed by three (out of four) fingerprinters on the
data of three (out of four) weeks and tested by the remain-
ing fingerprinter on the data from the remaining week. To
get a representative result, we performed 16-fold cross vali-
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Figure 8: True positive (TP) and false positive (FP)
rates for different attacker models; error bars show
variation (95% confidence) over different original
APs

dation for all possible combinations. The separation of data
was deliberately not random but followed a logical distinc-
tion. This guaranteed that the testing FP was never used
for training and samples in the testing period had a signif-
icant temporal distance from those in the training period.
This corresponds to a scenario where several users created
fingerprints over time and a new user compares his current
fingerpint against these at some different point in time, as
exploited in our proposed architecture (Section 9).

Our evaluation focuses on two measures: whether an orig-
inal AP is recognized (true positive) and whether a faked AP
succeeds in spoofing the identity (false positive). Figure 8
shows the result. The true positive rate (TP) for 2AP-based
methods is marginally better than for NTP and all rates are
around 90%. This is slightly less than the targeted 95%,
as the acceptance intervals are generated on disjoint train-
ing data. More interesting are the results for false positives
(FP). A näıve attacker has hardly a chance of succeeding:
All of our methods detect the impostor in more than 90%
of all cases. The best results are obtained with the 2AP-T
method (FP rate 2.23%).

The effectiveness of our method is particularly impres-
sive when dealing with an intelligent attacker. While with
the NTP method the attacker succeeds in 67% of all cases,
the 2AP method decreases his success rate to 56% and the
2AP-T method to 22%. Regardless of the attacker type, the
2AP-T method is able to improve the spoof detection rate
by a factor of three. Since the false positive rates for the in-
telligent attacker exhibit considerable variations for different
original APs (indicated by error bars in Figure 8), we show
the separated false positive rates per orginal AP and method
in Figure 9. As we can see, in general the 2AP method out-
performs NTP. However, the 2AP-T method is always sig-
nificantly better than both the NTP and the 2AP methods.
The error bars for the 2AP and 2AP-T methods indicate
the variance over the different comparison APs. The 2AP
method is prone to large variations caused by the different
temperature dependency characteristics of the comparison
APs. This effect is drastically reduced by 2AP-T, which
explicitly considers the current temperature. We further
see, that even for APs with similar attacker success rates
against NTP and 2AP (e. g., AP5/7 or AP2/8), the success
rate against the 2AP-T method differs notably. 2AP-T per-
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forms best for cases where temperature dependency is very
pronounced.

We now present an information theoretical perspective on
how much information the temperature contributes to the
classification of the APs in our sample.

7.3 Information Theory
From an information theoretical point of view, we are in-

terested in how much information is contained in the tem-
perature dependency, which we use as additional feature
for the 2AP-T recognition/fake detection method. A com-
mon evaluation measure is the mutual information (MI),
defined for two random variables X and Y as I(X;Y ) =∑

y∈Y
∑

x∈X p(x, y) log p(x,y)
p(x) p(y)

. In our case, Y represents

the considered AP pair, while X denotes the classification
feature, i. e., clock skew difference for the 2AP method and
the combination of clock skew difference and temperature
for the 2AP-T method.

The concept of MI is closely related to entropy and results
are expressed as bits. For feature selection, MI measures
how much information the presence of a feature contributes
to making the correct classification decision. In the case of
our methods, it measures how much additional information
is provided by the temperature dependency (2AP-T) com-
pared to observing only the clock skew difference (2AP). For
details about the calculation we refer to [19]. For our data
set, we obtain an MI for 2AP of 4.12 bits and for 2AP-T of
5.16 bits. Note that for our data, the MI is upper bounded
by 6.04 bits (as we are classifying 66 different pairs). There-
fore, the (information theoretically) perfect feature for clas-
sification cannot contribute more than 6.04 bits of infor-
mation. We conclude that the knowledge of temperature
dependency contains more than half of the remaining un-
certainty of access point identification when combined with
2AP clock skew differences.

8. METHOD WITHOUT EXPLICIT
KNOWLEDGE OF TEMPERATURE

Although our approach provides reliable detection of re-
placed APs, it depends on information that is not always
available in measuring devices: the temperature that APs
are exposed to. The question we address in this section is
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how, if at all, we can perform the detection of impostors if
no explicit temperature information is available.

We assume that there are at least three APs transmitting
in the environment to be evaluated (say, these are AP1, AP4,
and AP11). For every time instance, the fingerprinter is
able to derive three 2AP clock skew differences: AP1−AP4,
AP11−AP4, AP11−A1. The key idea of our approach is to
learn legitimate combinations of simultaneously occurring
differences. Figure 10 shows an example of two time in-
stances, time ti with clock skew differences (−3.797,−3.607,
−7.552) and time tj with (−0.704,−6.451,−7.013). We
use such triples of simultaneously measured clock skew dif-
ferences as vectors to train a machine learning technique.
Three APs is the minimum number required because from
two APs only one difference could be derived. Note that
when using only two APs the machine learning approach is
equivalent to the 2AP method and does not learn legitimate
combinations but rather single differences. The proposed
method only detects whether one of the three APs is faked
and not which one. This is similar to the 2AP and 2AP-
T methods only detecting whether one out of two APs is
potentially spoofed. As described in Section 5, a greater
number of reachable APs can be used to identify the actual
fake AP.

We apply support vector machines (SVMs), state-of-the-
art classification methods used in machine learning, which
are well-known for their high performance in terms of clas-
sification accuracy. The technique dates back to the work
of Vapnik and Chervonenkis [28] in 1974. The focal idea is
the interpretation of instances as vectors in a vector space.
Based on training data, the classifier tries to fit a hyper-
plane into the vector space which separates the instances
that belong to different classes. In our case (one class SVM)
the plane is fitted in such a way that the training data is
separated from the origin whereby a fraction of at most ν
(which is a SVM parameter) training points are allowed to
be outside the estimated region.

The plane is fitted such that the accumulated distance be-
tween the closest instances (support vectors) and the plane is
maximized to ensure a clear distinction between the classes.
In cases where the vectors are not linearly separable, the
vector space is transformed into a higher dimensional space
where the linear separation is possible (the kernel trick). An
interested reader is pointed to [5] for thorough information
about SVMs.



Sample Size TP [%] FP [%]
[% / #] avg/mdn avg/mdn

100 / 3520 87.26 / 96.88 12.18 / 0.00
0.05 / 300–400 85.95 / 96.34 11.07 / 0.00
0.015 / 130–160 84.53 / 94.81 10.96 / 0.00
0.005 / 40–50 80.48 / 90.13 10.54 / 0.00

Table 1: True and false positive rate without explicit
temperature knowledge

We divided our data into training and testing in the same
way as in previous sections. The parameter ν defines an
upper bound on the fraction of outliers and, at the same
time, a lower bound on the fraction of support vectors (i. e.,
the generalizability of the model). We set ν = 0.05; hence,
at most 5% of training data may be assigned to false neg-
atives by the model. Table 1 (first row) shows the results
of the evaluation. We choose the intelligent attacker model
described above (i. e., he replaces the original AP with a fake
AP that best matches the original clock skew). We skipped
the cases when the best fake AP is already included in the
triple. As our evaluation shows, on average more than 87%
of trustworthy environments are recognized as such (true
positive). The median reaches almost 97%. The intelligent
attacker is successful in only about 12% of all cases (false
positive).

The result is at first glance superior to the 2AP-T method.
However, the two methods cannot be directly compared as
they consider different numbers of simultaneously reachable
APs.

Nevertheless, the results without explicit knowledge of
temperature provide surprisingly high accuracy. This is
achieved even without tuning SVM parameters. We assume
that by optimizing them, one would get even better results
(but we omit this due to the high accuracy classification
even with the default parameters).

Recall that all our observations were collected in an en-
vironment where all APs shared the same temperature ex-
posure. In practical applications, this might not hold true.
However, we expect our method to still provide significant
detection accuracy as long as the different temperatures are
correlated, e. g., due to outdoor temperature or time of day.

For practical relevance, it is important to know how many
observations (training data) are needed to achieve good clas-
sification accuracy. To determine this number, we performed
our evaluation by randomly selecting only 0.05%, 0.015%,
and 0.005% of all available training data. This corresponds
to roughly 350, 150, and 50 samples. The results are shown
in Table 1 in rows two to four. As expected, less training
data leads to lower classification accuracy. However, the
accuracy degradation is very slight: using only 50 training
samples, on average the accuracy is as high as 80% for true
positives and 10% for false positives. These results underline
the practical relevance of our method as only a few dozen
observations without any temperature information are suffi-
cient to learn the parameters of a trustworthy environment.

9. ARCHITECTURE
To exploit the results described above, we propose an ar-

chitecture based on a crowdsourcing approach (Figure 11).
The core of this system is a trusted service (TS) that col-

Fingerprint

Database
Crowd

Fingerprint

Verdict

Beacons

Secured channel

Vodafone 11:45

Monday

ClockStockWeatherMusic

Camera

Phone E-Mail Adress Safari

Calendar iTunes iBooksNews

pm

Fingerprint

V
er

di
ct

tux@linux#

Trusted
Service

Figure 11: The architecture

lects fingerprints, performs the necessary calculations and
provides feedback to users. Assume a user who wants to
connect to a (potentially untrustworthy) access point (UAP)
and wants to ensure its trustworthiness. A client application
(app) first extracts timing information from beacon frames
of all receivable APs, calculates the respective clock skews
and, if available, measures the current temperature. The
pairs of MAC address and clock skew with the optional tem-
perature information represent the fingerprints. A secured
channel to the TS can be established in two possible ways: 1.
If the UAP provides free access to the Internet, using its con-
nectivity, 2. If not possible (e. g., because access is bound to
providing credit card information before enabled) via a side
channel, e. g., 3G. Encryption and authenticity can be en-
sured by using well-known certificate-based standards such
as SSL. Note that a man-in-the-middle attack on this chan-
nel by the UAP can be mitigated by hard-coding the certifi-
cate into the app. The client then sends the fingerprint via
the secured channel to the TS. The TS decides, depending on
the information provided by the client, which of the differ-
ent proposed methods for verification (SVM/2AP-T/2AP)
to use and calculates its decision about the trustworthiness
(the verdict)—either binary or score-based. The verdict is
sent back to the client, enabling the user to decide whether
to use the UAP or not. All fingerprints queried for verifica-
tion are stored and integrated by the TS into its assessment.
The more users use the system, the broader is the base for
this assessment and, therefore, its precision. Thereby, APs
establish a reputation.

A legitimate replacement of an AP by the operator will
not cause any confusion: the new device will have a different
MAC address and, hence, will be recognized as new AP in
that environment. Therefore, our crowdsourced approach
will automatically integrate this AP and begin to build its
reputation. Note that an attacker would also be able to
integrate his AP in this way. However, this would require
him to provide reliable long-term service to gain sufficient
reputation. The described approach could be implemented
without changing any standardized protocols and without
requiring the cooperation of network operators—instead, the
incentive for using this system is shifted to users who care
about their security. In future work we plan to implement
this architecture and test its effectiveness in a real-world
scenario.

Finally, it would also be possible to store the trained mod-
els of the SVM for a favored set of APs in the app itself, as
the verification of an environment against a trained SVM
model requires only low computational resources and the
models need only small storage capacities (the trained mod-
els in our experiments are around 2–32KB in size).



10. CONCLUSION
In this paper, we provide a practical solution to reliably

detect faked access points. This is done by passively esti-
mating the clock skew from information contained in man-
agement frames. We show a way to significantly increase
its information content by considering its dependency on
temperature. Additionally, our method completely elimi-
nates the influence of the measuring device on the finger-
print. Hence, measurements performed by different clients
become comparable. Interestingly, our method works even
without explicit access to temperature information and pro-
tects even against an attacker who selects a fake AP with a
similar average clock skew.

Our method exploits an intrinsic physical property that
provides the highest discriminability known so far of APs
using standard client hardware. The effort for simulating
this property is much more complex than adjusting the av-
erage clock skew, even if hardware is modified. This renders
the attack practically infeasible.

Our approach yields a strong feature for passive remote
physical device fingerprinting in wireless networks. Using
only 50 observations for training, our approach detects faked
access points in 90% of all cases.

No currently deployed protection mechanism for public
hotspots (e. g., web-based authentication) provides any secu-
rity against the described threat. With our proposed archi-
tecture it is possible to mitigate the danger without changing
deployed systems or the standard protocols used.
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