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Abstract— Hidden services (HS) are mechanisms designed to
provide network services while preserving anonymity for the
identity of the server. Besides protecting the identity of the server,
hidden services help to resist censorship, are resistant against
distributed DoS attacks, and allow server functionality even if the
service provider does not own a public IP address. Currently, only
the Tor network offers this feature in full functionality. However,
the HS concept in Tor is complex and provides poor performance.
According to recent studies, average contact time for a hidden
service is 24s which is far beyond what an average user is willing
to wait. In this paper we introduce a novel approach for hidden
services that achieves similar functionality as HS in Tor but does
so in a simple and lightweight way with the goal to improve
performance and usability.

Additionally, contrary to Tor, in our approach clients are not
required to install any specific software for accessing hidden
services. This increases usability of our approach. Simplicity
makes our approach easier to understand for normal users,
eases protocol reviews, and increases chances of having several
implementations of the protocol available. Moreover, simpler
solutions are easier to analyze and they are naturally less prone
to implementation failures rather than complex protocols. In this
paper, we describe our approach and provide performance as well
as anonymity analysis of resulting properties of the protocol.

I. INTRODUCTION

The primary goal of location hidden services is to pre-
serve the anonymity of the service provider (i.e., responder
anonymity) and to resist censorship. A hidden service can
be, for example, a news website that is declared as illegal
or is censored in a totalitarian regime. To the best of our
knowledge, Tor is a single deployed anonymization network
that provides state-of-the-art hidden services functionality to
its users (see Section VIII for a discussion of other approaches
and their inapplicability in our scenario). However, due to
a complex design the performance of hidden services leaves
much to be desired: it takes 24 seconds on average to contact a
service which is offered anonymously in the Tor network [13].
Additionally, having only a single possibility to run the hidden
services creates the risk of so-called software monocultures.
In this case, failures in the single protocol or implementation
can paralyze the whole network, possibly compromising the
overall security.

Recently, several new approaches for anonymization have
been proposed. One of them is Shalon [18], which is a
lightweight anonymization protocol based on open standards.
It aims to reduce complexity and delivers high bandwidth. The

most significant advantage compared to other approaches is
that Shalon makes use of out-of-the-box nested TLS connec-
tions to achieve a simple and elegant version of onion routing
(onion routing is the state-of-the-art approach to achieve low
latency anonymization on the Internet). The key feature of
Shalon is the buildup of anonymous communication on top
of the HTTP/SSL protocol suite. However, providing hidden
services is not possible in the current design of Shalon. Due to
its simplicity and high performance we have decided to build
our HS design based on the Shalon concept.

The first and primary goal of hidden services is to have
server resistance to distributed DoS (DDoS) attacks, i.e., it
is required to mount a DDoS attack on the entire Shalon
network to attack a hidden service. Secondly, hidden services
are resistant to physical attacks as the location of the server
is not hidden. Thirdly, as a side effect, hidden services can be
offered even if the service provider does not own a public IP
address or is located behind a firewall. Lastly, for convenience
reasons we want Shalon to provide similar functionality as Tor
— the state-of-the-art anonymization network used today.

The paper is structured as follows. Section II gives back-
ground information on Tor — the state-of-the-art approach for
low-latency anonymization. In Section III we describe the
building blocks that we used to build our approach. This
is followed by a protocol description in Section IV and the
evaluation of the protocol in terms of performance (Section VI)
and security (Section VII). Section VIII summarizes related
work in the paper’s context. Finally Section X concludes and
discusses the contributions of this paper.

II. BACKGROUND ON TOR

Tor is a low-latency overlay network deployed in late 2003
with the goal to provide protection against a non-global ad-
versary [3]. It consists of servers that are called onion routers
(ORs). Currently the network is comprised of about 2,000
ORs' [21], [15] that are running more or less permanently
by volunteers scattered around the globe. Each OR runs on
an Internet end-host and maintains TLS connections to many
other ORs at any time.

To anonymize Internet communications, end-users run an
onion proxy (OP) on their computer that is listening locally
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for incoming connections and redirects TCP-streams through
the Tor network. Thus, it makes use of source routing, which
means that the client determines the whole path through
the overlay network. When sending out the redirected TCP-
streams, the OP constructs circuits of encrypted connections
through a path of randomly chosen ORs. A Tor circuit, by
default, consists of three ORs, where each OR only knows
(i) which peer has sent him data (the predecessor) and (ii) to
which peer he is relaying data (the successor). A circuit length
of three constitutes a reasonable trade-off between security and
performance, where the role of the middle OR is to hinder the
last OR in the circuit (the exit node) to learn the identity of
the first OR (the entry node). If the latter two cooperate, users
can be deanonymized [3].

During circuit creation in Tor, the circuit initiator (OP) uses
Diffie-Hellman key exchanges to establish shared symmetric
session keys with each OR in the circuit. The user’s OP
encrypts all traffic before it is sent over the circuit, using
these keys in reverse order, starting with the key of the last
OR. Upon receiving traffic, each OR on the circuit removes
(or adds, depending on the direction) one layer of encryption
while relaying the data to the next OR, so only the last OR
(the exit node) knows the actual destination of a TCP stream.
The last node in a circuit reassambles the TCP packets and
delivers them to the final destination. The Diffie-Hellman key
exchange is used in order to prevent replay attacks and to
provide perfect forward secrecy.

Once a circuit in the Tor network is established, the user’s
OP can use it as a tunnel for arbitrary TCP connections.
To increase the protection against profiling attacks, a cir-
cuit is only used for a limited amount of time (or until a
threshold of data volume has been transferred). In the current
implementation, after approximately ten minutes a circuit is
discarded and a new one is put into use. Application data is
generally transferred unencrypted between the exit node and
the recipient on the Internet, unless the user and the recipient
are using end-to-end encryption, e.g., TLS/SSL protocols.

III. FUNDAMENTALS OF HIDDEN SERVICES IN SHALON

Even though we aim to achieve a similar functionality
to hidden services in Tor, contrary to their approach, we
want our design to be based on the philosophy of Shalon:
simple design and, if possible, reuse of existing standards and
software libraries. Hence, similarly to Shalon, the basis for our
approach is an SSL capable HTTP proxy. HTTP is a simple,
standardized, and popular protocol used on the Internet. SSL
is also a popular and standardized protocol to encrypt data in
communication channels. However, in order to offer hidden
services, there is a need to open a listening port on a remote
machine (which we further call a contact point) and to accept
multiple connections over this port. The connections should be
forwarded back to the service provider. Since this forwarding
must be performed efficiently (e.g., it would be inadequate to
use a separate tunnel for every new connection), there is a need
for a multiplexing protocol between the service and the contact
point. In order to reach these needs, we modified the freely

available proxy server Muffin [1]. We preferred this proxy
server written entirely in Java because it is simple (contrary
to Squid?) and does not have licence limitations (contrary to
DeleGate®). The Muffin proxy was extended to support SSL,
opening of a listening port, and multiplexing for handling
multiple connections.

The contact point is the heart of the HS concept in Shalon.
It acts as a gateway between the hidden service and its clients.
We added a BIND command to the HTTP proxy. It is similar to
the BIND command of the SOCKS protocol which is used to
instruct the proxy server to open a listening socket on a specific
port and to transparently forward data between the socket and
the anonymization tunnel. If the proposed port is occupied,
the contact point selects a random available port. Finally, the
contact point informs the hidden service about the allocated
port. This port is afterwards specified in the descriptor* of a
HS.

After a successful port allocation for serving as a contact
port for the hidden service, both ends of the connection —
the hidden service initiator and the contact point — start the
multiplexing protocol in order to handle simultaneous connec-
tions from clients in parallel. This is done transparently to the
clients. For multiplexing connections in Shalon we selected the
WebMUX protocol. WebMUX [5], originally developed by the
W3C HTTP-NG group, is a protocol for multiplexing several
streams over a single TCP connection. It is a further develop-
ment of the Session Control Protocol (SCP) [19], [4] which
provides lightweight multiplexing of data streams on top of a
reliable stream oriented transport. WebMUX is intended for,
but in no way restricted to, transport of web related protocols.
Its original goal was to support simultaneous rendering of
embedded objects in HTML documents in an efficient way.
According to the authors, the protocol is simple, has low
overhead, high performance, is deadlock-free (using credit
based flow control), and allows multiple application layer
protocol connections to be multiplexed over the same TCP
connection. An implementation of the protocol adds special
header fields to each application layer message, additionally
there are control messages not containing any payload. Those
control messages are, amongst other things, used for a credit
based control flow scheme.

We selected WebMUX because it is a well documented
standard with an availability of several reference implementa-
tions both in C and in Java programming languages. With the
help of the WebMUX protocol it became possible in Shalon
to multiplex many connections between the clients and the
HS over a single tunnel to a contact point. We extended the
HTTP proxy Muffin to include the MUX command. It instructs
the proxy to run a WebMUX protocol on top of the existing
connection, i.e., to alter the connection into a multiplexed
connection. Therewith, several parallel streams can share the
same anonymization tunnel. Incoming requests are managed

2http://www.squid-cache.org/
3http://www.delegate.org/

“Descriptor is a piece of data containing, among other things, contact
information of a service.



internally, i.e., they are transparently delivered to the proxy
server and treated as regular requests. Stream multiplexing
allows to decrease the number of tunnels used in Shalon. This
decreases the time needed for tunnel establishment and makes
it difficult for an attacker to distinguish different streams.
Hence, stream multiplexing increases the protection against
several attacks such as, e.g., the website fingerprinting [20].

IV. PROTOCOL FOR HIDDEN SERVICES IN SHALON

We propose to perform communication between a hidden
service and a client as shown in Figure 1. Every anonymization
tunnel is a normal onion encrypted Shalon tunnel consisting
of at least two intermediate nodes.

First, the hidden server creates an anonymization tunnel and
connects to one or several random nodes with hidden service
functionality (i.e., nodes that support multiplexing and opening
of listening ports). The HS asks for opening a listening port
(1). If the node accepts the request, the connection is kept
open until one of the nodes decides to tear it down; otherwise
the hidden service tries other nodes until it succeeds. Next,
the hidden service creates an anonymizing tunnel ending at
the directory service (2) and asks it to publish the contact
information of its hidden service. After this, the hidden service
is ready to receive requests from clients.

We distinguish two types of clients: anonymous and non-
anonymous. The difference between these two types of clients
is that anonymous clients perform all their request through an
anonymization tunnel whereas non-anonymous clients contact
hidden services directly at contact points. Knowing the ID
of the HS, clients connect to the directory service (3) and
ask for the contact information of the identified service. This
information contains, among other things, the addresses of
contact points. There can be multiple contact points per hidden
service. The clients select a random contact point and, finally,
connect to the specified port of that contact point (4). Now the
contact point starts to pass the data between the open tunnel
from the hidden server and the client’s connection.

As mentioned above, our design supports two types of
clients: anonymous and non-anonymous. Non-anonymous
clients can access hidden services completely without the
Shalon software. To this end, we extended the proxy server
Muffin and added a web interface with a simple query front-
end for a distributed hash table (DHT) (network information
in Shalon is stored in a DHT [17]). The front-end allows
descriptor retrieval of both anonymization nodes and hidden
services. Two formats are supported: plain and formatted.
Plain descriptors are served in a machine-readable XML
format and used for Shalon internal lookups. Formatted de-
scriptors are human-readable and tailored for retrieval via a
web browser. They are presented in the form of a web page
with the contact information in the form of clickable links
pointing to the contact points.

Additionally, we integrated the DHT used as a directory
for hidden services in Muffin and extended it with a filter
for detecting directory requests (i.e., telling them apart from
anonymization requests) and redirecting them to the DHT.

Hidden Server

Non-Anonymous Client Anonymous Client

Fig. 1. Use of hidden services in Shalon

Therewith it is possible to transfer directory information in-
band, i.e., on the same port as the anonymized communication.
As a side effect, this feature makes it difficult to distinguish
what kind of information is transferred over a tunnel (e.g.,
whether it is a DHT lookup or anonymization data), allows
to make anonymous and encrypted DHT queries, and eases
configurations to bypass firewalls (since only a single port has
to be unblocked).

There are two modes of operation for hidden services in
Shalon: (i) TLS gateway mode and (ii) open/public mode.
In the former mode, the HS starts a TLS gateway at the
hidden server node between the service and the tunnel to
the contact point. The gateway is used to authenticate the
service to the clients and to provide end-to-end encryption. To
authenticate the service, the certificate of the gateway is signed
with the private key of the service. As clients know the public
key of the service from the descriptor, the signature of the
certificate can be checked during the connection establishment.
Herewith the clients can make sure that they communicate with
the intended service and protect themselves from the man-
in-the-middle (MITM) attack. Additionally, in this case the
connection between the client and the service is end-to-end
encrypted. In the open/public mode, on contrary, no end-to-
end encryption is applied. Hence, the contact point can see the
content of communication and, additionally, mount the MITM
attack.

V. DESIGN IMPLICATIONS

With our extension, Shalon is able to provide the hidden
service functionality to any TCP based service. To this end,
the Shalon client has to be configured to offer the HS by
specifying the IP address and port (usually at the local host)
where the service is running. Additionally, it is possible to
specify the number of contact points. The ID of the service
is the SHA-1 hash (160 bit) of the public key of the service.
The URLs of hidden web servers consist of an ID (free of
colons) ending with .shalon extension. The Shalon proxy (i.e.,



anonymization node) is capable to filter out these URLs, look
up the contact information, and establish a connection to the
HS. Recall that the descriptor of HS is stored under its ID in
the DHT. Similarly to node descriptors in Shalon, descriptors
for hidden services are stored and processed in the XML
format. The descriptor includes addresses and ports of contact
points, public key of the service, operation modes, etc. The
descriptor is signed with the private key of the service. Hence,
it is possible to check its integrity. Contrary to lookups for
random nodes, IDs of hidden services are known in advance,
thus, DHT lookups in the ID space of hidden services are
not subject to attacks such as route capture and information
leakage [17].

As mentioned above, our design supports two types of
clients: anonymous and non-anonymous clients. Additionally,
hidden services support TLS gateway mode and/or open mode.
In case of an anonymous connection, the client creates a
standard three-hop circuit to the contact point. If the HS is
operated in the TLS gateway mode, the three-hop circuit can
be used to directly connect to the contact point and to initiate
the TLS handshake. Further communication with the HS is
encrypted. In an open mode, it is recommended to extend the
circuit to the contact point before connecting to the HS port.
Otherwise, the last hop in the circuit and nodes on the path
between the last hop and the contact point are able to see the
content of the communication. To support the extension of the
tunnel to the contact point, the descriptor of the HS includes
the ID of the contact point so that the clients can find out the
descriptor of the node acting as a contact point for the service.

Knowing the IP address of the contact point and the cor-
responding port, the hidden service can be contacted directly
if it is offered in open mode. In case of TLS gateway mode,
a TLS connection first has to be established. In case of a
web server, simply the use of the HTTPS protocol allows
to securely connect to the hidden service. Otherwise, a TLS
wrapper is required before the clients can proceed with the
application layer data. The wrapper communicates with the
TLS gateway at the server side which transparently forwards
data to the hidden service.

VI. PERFORMANCE EVALUATION

We evaluated the performance of our approach in a local
network under controlled conditions as well as in the Planet-
Lab testbed [2] “in the wild”. Furthermore, we compared the
performance of our approach to provide hidden services to the
approach of Tor. Every measurement was repeated 20 times to
calculate the average value together with the 95% confidence
intervals. For every throughput measurement, we transferred
10 MByte of data. To enable a fair comparison, we used the
standard tunnel/circuit path length of three hops. Figures 2 —
5 shows the results of the evaluation and the comparison. The
PlanetLab setup consisted of 400 nodes distributed all over
the world. To measure the performance of Tor, we used the
Puppettor Framework? that interacts with the Tor process with

5 Available on GIT: git://git.torproject.org/git/puppetor

the help of the Tor Control Protocol. It allows to start several
local Tor processes and to configure them “on the fly”, e.g.,
to connect to a private or the real Tor network.

Hidden Service contact time
(PlanetLab and Local Network, logarithmic scale)

Shalon TLS mode EPlan'et% = Tor (Plan’etg —
100000 Shalon plain mode (Planet) ez Tor (Local) =
. Shalon TLS mode ELocalg A
é 10000 Shalon plain mode (Local) e===
o
£ 1000 |
I
*g) 100 ¢
5 10
o
1
01—
Non-Anonymous Anonymous Client Tor
Client
Fig. 2. Connection time in local network and in PlanetLab
Hidden Service RTT
(PlanetLab and Local Network, logarithmic scale)
Shalon TLS mode (Planet) emmm Tor (Planet) ——=
100000 Shalon plain mode (Planet) ez Tor (Local) ===
Shalon TLS mode ELocalg =
10000 Shalon plain mode (Local) e===a
E 1000 |
!
100
=
10
1
0.1 L—
Non-Anonymous Anonymous Client Tor
ien
Fig. 3. RTT in local network and in PlanetLab
Throughput of Hidden Services in Local Network
j Shalon plain mode (Client) ===
60 Shalon plain mode (Server) ==
. Shalon TLS mode (Client) e=z==a
& Shalon TLS mode (Server) mmmm
= Tor hidden service (Client) =
=5 Tor hidden service (Server) —=
2
e
5 ER
=

Non-Anonymous Anonymous Client Tor

1ent

Fig. 4. Throughput in local network

The connection establishment time and round-trip times
(RTTs) are plotted in a logarithmic scale. The same repre-
sentation form is used for the throughput measurements in
PlanetLab. The contact time is the time needed to establish
a connection to a contact point. In case of a TLS gateway
mode, this time also includes a TLS connection establishment.
The throughput evaluation includes the throughput of a client
as well as the throughput of a server. Since a client is the
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bottleneck in a throughput measurement, the performance of
a server is significantly higher than that of single clients. In
general, the results justify our expectations: a simpler protocol
yields higher performance, i.e., significantly lower RTT, higher
throughput, and lower connection establishment times. An
interesting finding is that even in PlanetLab, hidden services
in Shalon provide lower RTT than Tor in a local network.

Besides the throughput of hidden services in PlanetLab,
Figure 5 shows the influence of multiplexing on the through-
put. The measurement is performed between two nodes (one-
hop tunnel) connected in a local Gigabit Ethernet network:
directly and through the WebMUX server and the WebMUX
client. As expected, the multiplexing negatively influences
the throughput. The RTT of both direct and multiplexed
connections was similar (about 4.8 ms on average).

We also evaluated the lookup times for HS descriptors. To
this end we used the Mojito® implementation of Kademlia. The
average time to find and fetch one descriptor in PlanetLab is
about 8 seconds.

VII. SECURITY CONSIDERATIONS

As all modern low-latency anonymization systems, Shalon
and hidden services in Shalon do not have the goal to
provide protection against a global attacker. This is made
intentionally since, firstly, a global attacker is rather unrealistic
and, secondly, every added piece of protection significantly
reduces performance. We consider the same attacker model as
Tor. Despite the simplicity of our approach, we claim that it
provides a similar protection as the concept of hidden services
in Tor — the state-of-the-art anonymization network used today.
There are two major attacks to consider regarding hidden
services: deanonymization of the service and the Denial of
Service attack.

Deanonymization of hidden services is possible in similar
situations as in Tor, i.e., when the adversary controls the first
and the last node in the tunnel. In terms of hidden services, the
last node simply corresponds to a client connecting to the HS.
The first node in the tunnel may find out that it is serving a
HS tunnel (e.g., by analyzing traffic patterns). But in order to
reveal the service, it needs to go through all available hidden

6See http://wiki.limewire.org/index.php?title=Mojito

services and to establish a test connection to them (in order
to match it to the pattern observed in the tunnel). However,
since we apply a modified DHT where it is possible to lookup
the value if and only if the exact ID is known, there is no
efficient way to find out all existing hidden services in the
system. Additionally, since we use contact points, there is no
way for a client to force a HS to build new circuits. Contrary
to this, every new connection from a client in Tor forces a
HS to establish a circuit to a rendezvous point. Even though
the exposure to this attack is already mitigated by the design
of hidden services in Shalon, it can be completely eliminated
when using guard nodes (cf. [14]).

To mount a DoS attack on hidden services, the attacker
needs to attack the contact points. However, hidden services
may react on failures of contact points and adapt to the
situation, e.g., by selecting new contact points and/or by
increasing their number. In case of a failure at a contact point,
the hidden service first tries to reestablish the connection to
the failed contact point. This prevents hidden services from
modifying their descriptors because of contact points updates.
To differentiate between the quality of service offered by
different contact points, we propose to collect the statistics
about the ratio of failures per time interval. This ratio is further
used when deciding which contact point to select. Regardless
of whether the list of contact points is updated or changed,
hidden services are continuously available under the same ID.

Depending on the local legislation, operation of contact
points can be a legal risk in some countries. Because the
contact points are the public nodes for contacting hidden
services, for an external observer it looks like these nodes
themselves are offering the service. In order not to obligate
all Shalon nodes to offer contact point functionality, we made
this as a feature which can be specified by node operators.
The nodes supporting contact point functionality are marked
as such in their node descriptors. To this end we extended
the format of Shalon descriptors. Moreover, the operators of
contact points may specify that they support only hidden
services offered in a TLS gateway mode. In this mode the
operators of contact points do not necessarily know what
content they are serving unless they explicitly connect to the
service they are offering. Still, the situation can be additionally
improved by obscuring the HS offered by contact points:
it is possible to put a magic string (similar to cookies in
HTTP) in descriptors of hidden services. Hidden services
allow connections only from clients knowing the magic string.
As contact points neither know the magic string nor the ID of
the service they are offering in order to look up the descriptor
and find out the magic string, they are not in the possession
of information needed to connect to the HS. Hence, hidden
services in Shalon can be offered in a mode that provides a
plausible deniability for operators of contact points: in this
operation mode contact points can in no trivial way find out
which content they are serving (recall that without knowing
the ID of the service it is not possible to efficiently find its
descriptor).



VIII. RELATED WORKS

Hidden services in the Tor network were deployed in
2004 [3]. They rely on rendezvous points that connect anony-
mous circuits originated from a client and a hidden ser-
vice. A client selects a random Tor node as a rendezvous
point, creates a circuit to it, and informs the hidden service
through one of the introduction points about his willingness
to communicate over a specified rendezvous point. Each of
the principals relies on himself to build a secure circuit to
both the introduction and the rendezvous point. Contrary to
Tor, our approach abandons the separation into introduction
and rendezvous points in favor of contact points that provide
dual functionality. This simplifies the design and contributes
to a significantly higher performance. While Tor encrypts data
on both the link layer and the circuit layer, Shalon encrypts
on the tunnel layer (equivalent to circuit layer in Tor) alone.
This leads to a significant performance increase as shown by
the measurements [18]. According to Loesing et al. [13], the
average time before sending out the request and getting the
answer from a hidden service in Tor is 24 seconds. Moreover,
the study revealed that most of the time is spent on connection
establishment to rendezvous and introduction points. Clearly,
most users do not tolerate such a high latency. According to a
study of Wendolsky et al. [22], most users are eager to wait up
to 4 seconds while requesting a website. Practical proposals to
decrease the latency include cannibalization of existing circuits
(extending them to introduction/rendezvous points instead of
creating new circuits from scratch) and connecting to several
introduction points in parallel and retaining the first successful
connection while tearing down the other connections.

@verlier and Syverson [9] propose an approach to increase
the resistance of the hidden service design in Tor against
DDoS attacks and to hide the existence of the hidden services
from everyone (in particular from directory service) except
the users knowing its service address. Unfortunately, this
design leads to further performance penalties. E.g., to protect
introduction points, authors suggest to use the so-called valet
nodes between the introduction points and the clients. This
leads to an even higher number of nodes in the tunnel to
the service. Additionally, the authors propose the use of
cryptographic tickets to authenticate clients. The improved
protocol also allows differentiation of clients, e.g., for different
quality of service classes.

In their follow-up publication [10], @verlier and Syverson
propose a simplified design for hidden services. The idea is
to combine the introduction and rendezvous point in a single
node and therewith to reduce the required number of nodes.
The client connects either directly through a valet node to the
hidden service, or the hidden service creates a tunnel to the
node before the valet node in the client’s tunnel which is then
used as a rendezvous point. The latter is done to ease the load
on the circuits from hidden services to valet nodes.

The probably most famous work in the area of hidden
services is also done by @verlier and Syverson. It is about
locating hidden services in Tor [14]. Even though the idea is

based on the well known fact that controlling the first and last
node of a circuit leads to deanonymization, the authors show
the effectiveness of this attack in the scope of hidden services.
A client initiates as many new connections to a hidden service
as needed until on one of the circuits from the hidden service
to a rendezvous point a malicious node is selected as the first
(entry) node. The attack can be eliminated using guard nodes.

Besides hidden services in Tor, there are similar concepts
in other networks, e.g., the eepSite concept in 12P [6] and
Freesites in the Freenet network [7]. While eepSites are
specially tailored for web services used in I12P, Freenet uses
distributed redundant storage of data which is accessible only
within the network.

Secure Overlay Services [8] is an architecture that specifi-
cally designed to resist DoS attacks. However, this approach
is applicable for classes of communication where both par-
ticipants are known to each other (i.e., have some form of
pre-established trust relationship). This clearly does not apply
to our scenario where the identity of communicating parties
has to be hidden.

IX. DISCUSSION

One of the main differences of our approach to hidden ser-
vices in Tor is that we abandon the separation into introduction
and rendezvous points in favor of contact points that unify
these two functionalities. This makes attacks like [14] not
possible in Shalon. However, the security and performance
implications (because of possible workload on the contact
points) of this approach have to be studied more deeply. An
additional downside of our approach is that in the current
version the HS cannot perform access control directly on the
contact point.

Contrary to Tor, we also refrain from the use of centralized
directories in favor of modified distributed hash tables. Hence,
it is not possible to efficiently list all the hidden services. The
attacker cannot easily find out the contact points responsible
for a HS if the ID of the HS is not known. This is done in a
natural way without using additional cryptographic techniques
as proposed in [9].

Another major difference to hidden services in Tor is that we
support two types of clients: anonymous and non-anonymous.
Non-anonymous clients do not have to install anonymization
or any additional software to access the hidden services.
However, they still need to find out the addresses of contact
points. To this end we provide a web-based DHT front-end at
every Shalon node. Connecting to Muffin on the Shalon port
with a browser, users knowing the ID of a hidden service can
request its contact information through a web form. The IDs
of hidden services can be distributed in a variety of ways:
e.g., through a hidden wiki as it is done in the Tor network,
through mailing lists, etc. Also private IDs are possible, e.g.,
via encrypted e-mails or through an offline distribution.

Similarly to Tor, our approach provides the application
transparency, i.e., there is no need to modify services itself,
any TCP-based service can be offered as a Shalon HS.



In terms of scalability, we estimate our design regarding the
process of HS traffic anonymization to be in the same scale
as in Tor. However, similarly as in Shalon [18], our approach
for HS requires less cryptographic operations (recall that Tor
encrypts everything twice: there is a TLS layer between the
nodes as well as cryptography on the circuit layer between the
client and corresponding ORs). Therefore, we expect HS in
Shalon to be able to serve more clients with the same amount
of CPU power. Alternatively, given the same number of users,
more CPU power per user should be available for HS in Shalon
(the CPU saturation is suspected to be the limiting factor for
most Tor nodes [16]).

We also considered other alternatives as an underlying
tunneling protocol for Shalon. One of them was SOCKS.
SOCKS is a byte level protocol with an attractive feature
— the BIND command which opens a listening port on a
remote machine. This can be useful to provide support for
hidden services. However, only a single connection can be
accepted on the opened port. Furthermore, according to the
SOCKS specification [12], [11], an opened port should only
be used for connections from the hosts a client already has
an existing connection to (e.g., a second stream for a FTP
connection). Thus, misusing this feature for hidden services
would not be conform to the standard usage of SOCKS. An-
other possibility would be to use SSH (Secure SHell) tunneling
and multiplexing. SSH is an application layer protocol for a
secure login to a remote computer [23]. It supports the so-
called port forwarding, which allows to open a listening port
on a local machine and to forward all connections to this
port via the SSH connection to a server side and then to a
specified host and port. This forwarding supports multiplexing
of multiple connections via a single TCP connection using the
SSH integrated session management. The integration of this
protocol in Shalon as well as its adaption for our scenario
(e.g., disabling of authentication and encryption) would again
require modification of a complex protocol in order to make
it suitable for our needs. Beyond doubt these are not the only
alternative protocols Shalon potentially could use.

A similar situation arises with the multiplexing protocol.
To provide hidden services efficiently, Shalon needs a proto-
col that allows for tunneling multiple concurrent, interleaved
streams over a single TCP connection. We applied the Web-
MUX protocol to fulfill this goal. However, possibly in the
future the SPDY’ protocol would be a better alternative for
this goal. The SPDY protocol is an alternative method for
transferring web content over TCP, designed to improve effi-
ciency and performance. It is a transport layer for HTTP with
multiplexing functionalities. As most desired kind of traffic in
anonymization networks is HTTP, we find it challenging to
use the multiplexing protocol designed to improve efficiency
and performance of HTTP traffic.

Because of the integration of the Muffin proxy and DHT
in Shalon, there is no need for any external software that
needs to be configured and started separately. Additionally,

7See http://dev.chromium.org/spdy/

it allows for “in-band” network information distribution and
multiplexing of multiple streams over a single TCP connec-
tion. Non-anonymous clients of hidden services do not need
any additional software to access the services. To the best of
our knowledge, this is the only existing approach for hidden
services that offers this feature. As our performance evalu-
ations show, our approach outperforms Tor hidden services
regarding all the studied performance metrics. For instance,
the HS setup and contact time is by the factor of 2 faster than
in Tor, the RTT is up to the factor 18 lower than in Tor.

Our future work will include design and evaluation of
possibilities to offer several descriptors for the same HS (e.g.,
using the conjunction of IDs with salt values) with different
contact points and quality of service to serve different groups
of users. Additionally, we plan to provide tunnel multiplexing
between servers. So far only streams of a single client are
multiplexed in a single TCP connection. Of a great interest
would be to multiplex connections from different clients within
a single TCP connection between two nodes. This would
reduce the number of required file descriptors and obscure
client tunnels from an external observer.

X. SUMMARY AND CONCLUSION

In this paper, we proposed how Shalon — a lightweight
anonymization protocol based on open standards — can be
extended to offer hidden service functionality to its users.
Hidden services preserve anonymity for a service provider, can
be used to protect against distributed DoS attacks, and help to
overcome censorship. All in all, we achieve similar properties
as hidden services in Tor, but in a simpler and more elegant
way, reusing existing protocols and software. The evaluations
show that our design provides similar level of protection as
hidden services in Tor but at the same time offers significantly
higher performance, e.g., the RTT of our scheme is up to the
factor 18 lower than in Tor. The key feature of our approach is
the fact that hidden services in Shalon can be accessed without
installing any additional software, which is not possible when
using hidden services in Tor.
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