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Abstract. Node lookup mechanisms constitute an integral part of any
overlay network, and hence also of anonymous communication networks.
Today, most anonymizers use centralized directories, which leads to scal-
ability problems in the long run. Additionally they require the user to
trust the directory provider.
In this paper we revisit the concept of distributed hash tables to ad-
dress these issues. We propose a scalable node lookup system based on
Kademlia and show how it notably hardens the eclipse attack and node
fingerprinting. Additionally we provide comparative scalability analyses
for our approach and Tor’s directory protocol.

1 Introduction

Anonymous communication techniques are a fundamental building block for
privacy-friendly web browsing as well as privacy-aware identity management,
eGovernment, eCommerce and eHealth technologies. While cryptography can
protect the integrity and confidentiality of the data part of the packets, every-
one along a route can still observe the addresses of the communicating parties.
Anonymous communication deals with hiding relationships between communi-
cating parties.

Currently, the most popular and widespread anonymous communication net-
work is Tor [1]. The Tor network itself is a circuit switched, low-latency anonymiza-
tion network which targets on providing protection at the network layer against
a non-global adversary. Currently, the number of Tor servers is about two thou-
sand4 [2], whereas the number of users is estimated to be hundreds of thousands.

⋆ “Center for Quantifiable Quality of Service in Communication Systems, Center of

Excellence” appointed by The Research Council of Norway, funded by the Research

Council, NTNU and UNINETT. http://www.q2s.ntnu.no
4 as in February 2009.



On the one hand this large user base is seen as one of Tor’s strengths, since the
degree of anonymity is usually linked to the number of active users. On the
other hand this is a problem at the same time for the directory: in Tor every
user knows about every router. Clearly, this limits scalability.

In this paper, we address the problem of distributing information about the
identity of anonymizing networks’ servers to its clients by revisiting the distri-
bution via a distributed hash table. Similar to most low-latency anonymization
networks, which are build to withstand a local (active) attacker, this work will
focus on the same attacker model.

2 Related Work

Most deployed anonymous communication networks, e.g. AN.ON/JAP [3] and
Tor [1], use a centralized directory service. They require each user to know all
nodes in the network. This has several advantages, among others: users are able
to make their decision based on the same knowledge base; also a number of
attacks are made more difficult [4].

However, approaches enforcing users to know every node in the network entail
scalability problems. Moreover, the usage of central directories requires users to
trust the directory provider. In Tor, an onion proxy5 (OP) creates circuits by
selecting three suitable onion routers6 (ORs) from a list of all currently available
ORs, the directory. To this end, certain trusted Tor nodes provide the directory

service by serving signed documents containing information about the available
ORs. Such a network status document contains router descriptors of all currently
known ORs, including meta information describing their current status. Due to
scalability issues stemming from an increased growth of the Tor network, there
have been several changes in the directory protocol since its initial release. Today,
Tor is already using the third version of the directory protocol. The authors
admit in the design document that requiring each Tor node to know all about
all other Tor nodes is maybe not a viable solution in the long run [5].

In the first version of Tarzan its authors [6, 7] propose the use of a DHT to
distribute network information. Due to security problems with respect to their
attacker model this approach was later replaced by a gossiping protocol. In their
original approach, each peer is represented by a key which is the cryptographic
hash of its IP address. By searching for a random lookup key, a peer can discover
a random host’s IP address together with its public key. However, the authors
have not proposed any mechanism to check the integrity of a reply. In its second
version, similar to Tor, Tarzan also requires all nodes to know about all other
nodes. To achieve this, the authors proposed a simple gossiping protocol, which
is described on a high level only.

MorphMix [8] requires each user to possess information only about a limited
amount of other users, even during the operational phase of the MorphMix
protocol. For the circuit setup so-called witness nodes are used to facilitate the

5 The client-side.
6 The server-side.



selection of nodes for circuit extension; this is a unique feature in MorphMix,
as in most other networks the users choose the path themselves for security
reasons. In order to facilitate possible security issues arising from this feature,
MorphMix uses a collusion detection mechanism to detect malicious nodes that
misbehave by offering other colluded nodes for traversal. The detection bases
on the hypothesis that colluding nodes have a different behavioral pattern and
that this can be pinpointed on the long run. However, this protection scheme
has been shown to be broken [9].

Salsa [10] is a DHT which was specially developed for anonymization net-
works. The identities are based on hashes of the nodes’ IP addresses which are
organized in a tree structure. Redundancy and bound checking are used while
doing lookups in order to prevent malicious nodes from returning false infor-
mation. According to simulations, the scheme prevents attackers from biasing
the path selection as long as the fraction of malicious nodes in the system does
not exceed 20%. However, further analysis has shown [11] that even in this case
Salsa is less secure than previously thought: if the number of corrupt nodes is
below 20%, still more than a quarter of all circuits are compromised because of
the information leak.

3 Attacker Model

In this section we describe the assumptions on our attacker model. We consider
a local attacker with the following capabilities:

– Passively observe some portion of network traffic;
– Actively operate its own nodes or compromise some fraction of honest nodes;
– Actively delete, modify and generate messages.

Further we assume that the adversary cannot break cryptographic primitives.
We also assume that a client knows at least one semi-trustworthy7 entry point in
the network which is not corrupt. Please note, that this is a weaker assumption
than the assumption of a single semi-trusted third party everybody needs to
trust. The latter is an assumption of Tor and AN.ON respectively.

4 Protocol Description

The scalability problems regarding centralized approaches for network informa-
tion distribution constitutes an incentive to study decentralized alternatives.
Therefore, we have applied a distributed hash table (DHT) to implement a net-
work information service. A DHT has a set of attractive features: distributed
data storage, scalability, load balancing, and fault tolerance. In our approach we
have used the Kademlia DHT [12] which is based on the XOR-metric8.

7 I.e. trusted with respect to node lookups.
8 The larger the XOR of two identities is the more far away are the identities from
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In Kademlia, objects and nodes are represented by 160-bit identities (IDs).
Below, we use the term nodeID to refer to an ID that represents a node, while
objectID denotes an ID that refers to an object. Every node provides four remote
procedures callable by other nodes: findnode, findvalue, ping and store[12].

Nodes in Kademlia are found by a local procedure called nodelookup. A node-
lookup returns the k closest nodes w.r.t. a XOR-metric and a given 160-bit word.
The parameter k is a global parameter in the network. A node picks the k closest
locally known nodes to start the nodelookup. From this selected set the node
picks α different nodes on which it calls the findnode procedure. Every call re-
turns again the k closest nodes known by the queried node. Similarly, in the next
iteration, a set of α from the k closest nodes, which have not been contacted
yet, will be queried. This repeats until the closest node remains the same. In the
following step all k closest nodes not queried yet will be queried. Finally, the k

closest nodes will be returned.

In our approach, an object in the DHT represents a detailed description of a
network node. This object is called a descriptor. It contains not only mandatory
contact information (IP address, port), but also a public key as well as a signa-
ture to prevent malicious modification of the descriptor during its transfer. The
descriptor can also be equipped with additional information. The objectID of a
descriptor equals the nodeID of the network node described by the descriptor.
All servers have a unique nodeID, which equals a cryptographic fingerprint of
their public key. Hence it is legitimate to assume that nodeIDs are uniformly
distributed in the 160-bit space.

Only servers which provide the anonymization service are members in the
DHT. Clients are not registered as members, and thus end-users cannot be found
by issuing a nodelookup9. To execute queries, a user maintains encrypted con-
nections to a few (at least one) semi-trusted servers it knows and forwards all
requests to these servers. The servers execute the queries and then send the re-
sults back to the user. In the remainder of the text we implicitly assume this
behavior for clients, whereas servers directly execute their queries. This proce-
dure aims to harden fingerprinting attacks [13]: Due to the encryption a local
attacker observing the link between the node and client can not gather informa-
tion about the client’s local directory.

It is not required that users must know about all nodes in the network (i.e.,
lookup all descriptors). To build geographically widespread circuits containing
nodes from the whole network we randomly search for nodes. This can be done by
executing a nodelookup for a random 160-bit word. The result of this nodelookup
is the set of nodeIDs which are closest to the generated word. The procedure
findvalue issued on one of these nodeIDs will return the corresponding descriptor,
since each node stores its own descriptor under his nodeID. This facilitates the
search for nodes.

The results of a sequence of searches will be stored in a local database on the
client’s side. This information will later be used to build up a connection over

9 This makes it hard to enumerate all users of the system.
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a subset of servers in the directory. This caching prevents an attacker to gather
information on the initiator of a path due to time correlations.

As mentioned above the descriptor is a signed document. The public key used
to verify the signed descriptor is shipped together within the signed descriptor.
On the first glance this does not help to protect against malicious modification,
since a attacker can simply generate a valid signature by replacing the original
public key and signature with its own. However, this attack as well as a set of
other attacks (like MitM) are prevented due to the tight connection (see Figure 1)
between nodeIDs, objectIDs and the used keys in the certificates.

In our design, the nodeID is equal to the SHA1 hash of the DHT public key
of the node. This limits the attacker’s ability to freely choose its position in the
DHT. Additionally, this also prevents an attacker from placing the same descrip-
tor various times under different IDs. Lastly, this also hinders him from updating
the DHT with erroneous descriptors for already existing honest nodes10.

The private key used for signing the descriptor (the DHT key) is also used
for signing the server certificate which is used during the establishment of an
encrypted connection (e.g., TLS encryption) to the anonymizing node. This en-
sures a one-to-one mapping between a descriptor and the corresponding server
certificate (c.f. Figure 1). The corresponding TLS public key is stored within
the server certificate. By verifying the server certificate with the public key of
the descriptor (DHT public key), the client can check if the server is the one
referenced within the descriptor.

5 Security Analysis

One of the most serious threats against distributed hash tables are eclipse at-
tacks [14]. These attacks aim to “eclipse” parts of the network or the information
within it. In our setup a successful eclipse attack enables an adversary to pre-
vent a node to find honest nodes. This results in a higher percentage of malicious
nodes being present within the local lists of the honest nodes than in the whole
network. Whereby the attacker increases his probability to identify a user in an
anonymization process.

10 Note that every server stores its own descriptor because the nodeID equals the
objectID.
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We assume that a good11 strategy to reach the attacker’s objective is, to
be uniformly distributed over the whole key space. To this end the attacker
generates nodeIDs as a normal honest user would do. We also assume that only
the attacker knows the identity of the malicious nodes within the DHT. Moreover
the attacker returns only malicious nodes whenever a findnode request on one of
its nodes is triggered. This increases his chances to be in the client’s local list.

In our simulation we use a simplified Kademlia protocol. Therefore our sim-
ulation does not cover optimizations or caching functions [12]. We simulated
directory lookups as follows: in one run we want to find 100 disjoint descriptors.
In order to do this, at least 100 searches are required. For each search we select
a random honest node that executes the search for one random ID.

In order to reduce the results’ variance, each run (finding 100 disjoint random
IDs) was repeated 100 times. Figure 2 presents the influence of α – lookup
redundancy factor – in a DHT of n = 5000 nodes (k = 20). The x-axis shows
the fraction of malicious nodes in the DHT. The y-axis plots the fraction of
malicious nodes in the client’s found list. Figure 3 depicts the influence of an
increasing number of users on the result.

Both figures show that the attacker’s chances increase if either the total num-
ber of nodes grow (and the attackers fraction remains constant) or the attacker
increases the amount of malicious nodes. It is also possible to see that α can be
used to decrease the influence of the attacker.

A second dangerous attack on clients in a DHT is fingerprinting [13]. One
possibility to collect information about the client’s view is to observe the queries
in the DHT. If this holds, the attacker is able to partially reconstruct the victim’s
local directory and use this knowledge to reduce the anonymity set of the users.
We propose that clients do not execute requests directly on their own, but rather
forward encrypted requests to at least one semi-trusted server. Therewith the

11 We do not claim this is an optimal strategy.
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attacker is not able to gather information about the content of a client’s directory
by eavesdropping the connection between the client and semi-trusted server.
Moreover, since we are not dealing with a global attacker, colluding DHT nodes
have no guarantee to observe every request (originating from the semi-trusted
hosts). Since several users use the same nodes for their lookups, the uncertainty
about client’s directory is further increased.

Please note that this procedure neither protects against denial of service at-
tacks nor Sybil attacks. However, to the best of our knowledge, Sybil attacks [15],
as well as (distributed) denial of service attacks, constitute unsolved problems
for most of the other approaches to network anonymity, too.

6 Scalability Analysis

In Kademlia nodes present leafs in a binary tree. We assume the height of this
binary tree to be in O(log(n)), where n is the number of nodes. This is reasonable
due to our assumption of the uniform distribution of the IDs. The number of
steps for a nodelookup in Kademlia is h − log(k)[12], where h is the height of
the binary tree. Since we call α many nodes per step which each return k nodes,
a nodelookup is bound by a function of the order O(α · k · log(n)).

To find a random descriptor a user needs to generate a random 160-bit binary
word and perform a lookup for it. As a result the user gets a set of k nodeIDs
(together with the contact addresses) that are closest to the generated word. This
set also includes the requested word, if it happens to be an existing nodeID. After
the lookup procedure is performed, the user needs to query one of the nodes from
the previously returned set to download a descriptor12. The cost of downloading
a descriptor is bounded by the order O(1), and, therefore, the overall costs of
finding and fetching a single descriptor is in O(α · k · log(n)).

12 Every node stores at least its own descriptor.



Further, we assume that a user wants to find c different descriptors (1 <

c ≤ n). The expected number of queries to do that is
∑c

i=0

n

n−i
[16]. For small

values of c (c ≪ n), this roughly equals to c. In case when c → n (note, that this
is the worst case), this problem is equivalent to the classical coupon collector
problem [16], and therefore the expected number of searches is c · Hc, where
Hc is the c-th harmonic number. Hc can be approximated by (ln(c) + γ) where
γ ≈ 0.577 is the Euler-Mascheroni constant. Thus, the expected number of
search queries is bounded by a function in O(c · log(c)). If we assume that k,α ∈

O(log(n)) and due the fact that a single search is bounded by O(α · k · log(n)),
we can conclude that the expected costs for a user to find c randomly chosen
descriptors is bounded by a function in O

(

c · log3(n) · log(c)
)

.
Let m be the number of users in the whole network. Therefore, the ex-

pected costs for the total network distribution process in the whole network are
bounded by O

(

m · c · log(c) log3(n)
)

. Because of the load-balancing properties
of the Kademlia DHT, and also assuming uniform distribution of the nodeIDs,
the expected network information distribution costs for a single node is bounded
by O

(

m

n
· c · log(c) · log3(n)

)

.
If we assume, that the users need to find only a constant number of descriptors

(c is constant in this case), the expected costs for a single node is bound by a
function in:

O

(m

n
· log3(n)

)

⊂ O(m). (1)

In case that every user wants to find every descriptor within the DHT (c = n),
the expected costs are bound by a function in:

O
(

m · log4(n)
)

. (2)

However, since every query returns the k closest nodes to a given ID, possibly
there are better strategies for finding every node, e.g., a DHT walk along the
whole ID space. Please note that every node returns k closest nodes.

In the following, we compare our network information distribution approach
to the one used in Tor. To this end, we analyze the latest version of the Tor
directory protocol (version 3) [5].

Due to the nature of Tor’s directory approach, the information about the
descriptors needs to be refreshed at regular time intervals. In our analysis, we
assume that the redistribution procedure needs to be repeated within a constant
time interval. This is realistic, considering that every Tor descriptor needs to be
updated not later than within 18 hours [5].

In the Tor network there is a differentiation between Directory Authorities
(DA) and Directory Caches (DC). DAs are “semi-trusted” servers that must be
operated by a Trusted Third Party (TTP). In contrast, a DC can be operated
by any volunteering user. As mentioned above, Tor also distinguishes between
the ORs (relaying servers) and the OPs (the client application). Let n be the
number of ORs and m the number of OPs. For the sake of simplicity we assume
that the set of directory servers (DA and DC) is distinct from the set of ORs.



This does not reflect the real world, but the influence of our analysis is neglible,
since the number of DAs and DCs is much less than n. Let a > 1 be the number
of DAs and b ≥ 1 be the number of DCs within the network.

Briefly, the third version of the directory protocol in Tor works as follows:
first, every OR uploads its descriptor to every locally known DA. Second, all DAs
participate in a consensus protocol to create a consistent view over the network.
This view is represented by a so-called consensus document, signed by every DA.
In the next step every DC downloads this consensus document as well as every
missing descriptor from the DAs. Finally, a regular fetching of the network status
occurs. After that each OP downloads updated or missing descriptors from one
of the DCs13.

Because every OR uploads its descriptor to all known DAs, the cost of the
first step of the distribution process can be estimated with a function in O(n)
(for a single DA). Note, that the size of a descriptor does not depend on the size
of the network and therefore does not appear in the O notation.

In the second protocol step, every DA sends its complete view on the network
to every other DA. The size of this information is bound by O(n). Therefore, for
a single DA, the costs of consensus are bound by a function in O(n·a). The result
of the consensus protocol run is saved in a so-called consensus document. This
document is periodically downloaded by all DCs. After processing the consensus
document, DCs download missing and outdated descriptors from the authorities.
For this procedure the costs for a single DA is bound by O(n·b

a
), under the

assumption of uniformly distributed load over all DAs.
After this step, the consensus document and all descriptors are mirrored at

every DC. The clients (OPs) download the consensus document directly from
the DCs if they know any DC. If this is not the case, the OPs download the
consensus document from one of the DAs. For the benefit of Tor, we assume
that an OP knows at least one DC. In this case, the overall costs for a DA can
be bound by a function in:

O

(

n ·

(

1 + a +
b

a

))

. (3)

Next, we analyze the costs for a single DC. As mentioned above, the function
for every DC – to download the consensus document – is bounded in size by
O(n). Further, the consensus document and the missing/updated descriptors
are downloaded by every OP from the DCs. We also assume this process to take
place uniformly distributed among all DCs. Then, the costs for a single DC are
bounded by a function in O(m·n

b
), and thus the overall costs for a DC under our

assumptions are bound in:

O

(

n +
m · n

b

)

. (4)

If we assume that the number of DAs are in O(log(n)) and the number of
DCs grows linearly with the number of ORs (both assumptions roughly reflect
current state of the Tor network), we get the results shown in Table 1.

13 Please check [5] for more information about the directory protocol



Note that in the case of our approach the numbers in the table reflect the
situation where every user wants to find a constant number of descriptors within
the DHT. The costs, when every user wants to find every descriptor is bounded
according to Formula 2.

The presented analysis shows that the bottlenecks in the network information
distribution process in Tor are the DAs. The analysis of our approach shows
that even if k and α depend on the network size to harden eclipse attacks, our
approach is able to provide a good scalability.

Tor
Our approach

DA DC

Costs/Server O

“

n
2

log(n)

”

O (m + n) O (m)

Table 1. Comparison of Distribution Costs

7 Conclusion and Discussion

Although the distribution of network information and the anonymization pro-
cess are mutually disjoint, the network information distribution has, however,
an implicit impact on the anonymization process. Information leakage in the
distribution process can be used to reduce or even revoke the anonymity on the
network layer.

We find it challenging to make further steps towards the application of dis-
tributed methods and provide incentives for the community to advance the re-
search in this topic. We showed that Kademlia can be suitable for the distribution
of network information with respect to a local attacker. However, a number of
open issues with using a DHT remain, especially regarding protection against
several attacks like the sybil attack or denial of service attacks. Especially the
Sybil attack represents a serious challenge. Another question is, if there are more
efficient strategies for a local attacker to mount an eclipse attack.

In [4, 17] attacks on the route selection were shown where users posses only
a partial knowledge about the network. This is also the case in our approach,
since the user’s local directory may only contain a subset of a whole directory.
However, as all clients’ requests to the DHT are done through server over en-
crypted connections, it is not trivial for an adversary to determine the local view
of a client in the network and hence the attacks described in [4, 17] cannot be
mounted easily.

Often the security properties of a DHT are considered inferior compared to
a central directory approach. However, our eclipse attack analysis indicates that
Kademlia can withstand a significant fraction of malicious nodes. In addition,
our approach has some major advantages: we showed that it scales significantly
better than the centralized directory approach of Tor. Also, by changing α in a
nodelookup we can trade-off the probability of a successful eclipse attack with



the costs of doing a nodelookup. This gives us a flexible possibility to adopt our
approach to our assumptions about the attacker, and the network.

References

1. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The Second-Generation Onion
Router. In: Proceedings of the 13th USENIX Security Symposium. (2004)

2. : Tor Network Status. https://torstatus.kgprog.com/
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