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Abstract—Commonly used identifiers for IEEE 802.11 access
points (APs), such as network name (SSID), MAC, or IP address
can be easily spoofed. This allows an attacker to fake a real AP
and intercept, collect, or alter (potentially even encrypted) data.

In this paper, we address the aforementioned problem by
studying limits of unique remote physical device identification
based on their clock skew—an unavoidable phenomenon that
causes clocks to run at marginal but measurably different speed.
To this end, we propose an algorithm for passive fingerprinting
using timestamps regularly sent by APs in beacon frames. The
major advantages of our method are that it is online and that
we are able to eliminate the influence of clock skew of the
measurement device. Hence, fingerprints performed by different
devices become comparable. We calculate the precision of our
clock skew measurement algorithm and provide a termination
criterion for estimation of the clock skew with arbitrary precision.
Moreover, conducting a large scale evaluation, we study the
stability and uniqueness of clock skew as a means for remote
wireless device identification.

I. INTRODUCTION

Up to recently, Internet access was mostly performed from
the same “trusted” places (e. g., home, office), which imposed
no particular challenges on trust in service providers. Today,
mobile devices offer the possibility to be connected all the time
as public access points (APs) become omnipresent. We are
more and more in situations where we connect to “unknown”
networks because of cost-efficiency, e. g., in the shopping
mall, in coffeehouses, on the street. Since commonly used
identifiers, such as network name (SSID), MAC, or IP address
can be easily spoofed, malicious access points can pretend to
be those known to the user and act as man-in-the-middle, i. e.,
intercept, collect for further misuse, or even alter the data.
Moreover, association with a malicious access point enables
various attacks on connected devices as the latter can be
directly addressed.

The arguments as listed above raise the necessity for
methods and tools that enable remote device identification.
A straightforward solution to this problem is the usage of
Robust Security Network Association in 802.11i standard.
These authentication protocols apply cryptographic primitives
using an additional authentication server [18], which requires
setup and maintenance. Since entities running open access
points usually do not have an incentive for such an additional
measure, the approach is not widely used.

Therefore, there is need for a solution that is able to provide
reliable identification of hotspots, i. e., device fingerprinting,
without any active cooperation of the hotspot provider. The

focus of our work is on a method that is promising to yield
unique identification of devices (even of the same vendor and
series) and that can be performed by ordinary clients without
any special hardware.

In this paper, we study limits of unique remote physical
device identification based on their clock skew, a physical trait
leading to tiny yet observable differences in clock speed. In
all regular electronic clocks (and, thus, the ones in access
points) the clock signal is produced by a crystal oscillator.
The frequency of this oscillator depends on manufacturing
parameters (e. g., the cut angle) and the type of crystal used.
The imperfection in mechanic accuracy during the production
process leads to slightly different frequencies even for crystals
of the same type, series, and production date [9]. The clock
skew is commonly given by a measure of parts per million
(ppm). Since clock skew is based on hardware characteristics,
it promises to provide a reliable device identification that
cannot be easily manipulated.

In our approach, we use timestamps regularly sent by access
points in beacon frames. These are management frames that
are periodically transmitted by access points to announce
the presence of a wireless network. Beacons include, among
others, timing information in microseconds. This information
is used by a timing synchronization function (TSF) that
keeps the sending and receiving time slots synchronized for
all stations in a basic service set (BSS)—the AP with all
associated clients. Each client adopts the timing broadcasted
by the access point. The TSF timestamps in beacon frames are
sent at a high frequency (typically every 100 ms), are of high
precision, and, most notably, do not experience processing
delays before sending (by specification).

All currently existing approaches in the field of clock skew
based wireless device fingerprinting require modification of the
device driver. Moreover, they fail to eliminate the clock skew
of the measurement device and, hence, they are not able to
provide a method for comparable remote device fingerprinting
when using different measurement devices. Additionally, all
of the proposed methods were only tested on a small proof-
of-concept set of APs and measurement devices. Therefore,
no conclusions on the uniqueness of devices’ clock skews
can be drawn. With our methods and evaluations we claim to
overcome these drawbacks and demystify the addressed topic
along several dimensions.

Contribution: Our contributions are as follows: (i) We
propose a mathematical model for describing the influence of



the measurement device’s clock skew on the estimation of a
remote clock skew. Based on this model, we propose a method
that estimates and removes the clock skew of the measurement
device, thus, making results from different fingerprinters com-
parable. (ii) We provide an efficient online algorithm with
arbitrary precision. Our method neither requires modification
of the kernel nor of the driver and can be performed on most
out-of-the-box Linux/Unix systems. (iii) We provide the most
comprehensive evaluation of remote clock skew estimation and
expose how distinct different physical devices are based on the
information leakage from TSF time of WiFi chipsets. We come
to the conclusion that TSF information can be an indicator to
differentiate between different physical devices. However, it is
not as unique as thought before (e. g., [11]) to reliably identify
single devices.

II. RELATED WORK

In general, the methods for remote physical device fin-
gerprinting can be classified into active and passive. While
active techniques require an interaction with the device to be
fingerprinted (the fingerprintee), a mere observation of traffic
is sufficient for passive methods.

Active methods are proposed by Sieka [20] and Bratus et
al. [3]. Sieka uses precise measurements of the time it takes
for a node to perform steps of the authentication procedure.
The approach requires two different measuring devices for
fingerprinting. Bratus et al. propose to use active behavioral
fingerprinting based on malformed stimuli response, i. e., how
devices react on non-standard and malformed 802.11 frames.
In general, such active methods are detectable by the finger-
printee and can even potentially cause a disruption of the
regular network communication.

Passive methods do neither require any cooperation with
other nodes nor can be detected by the fingerprintee. Due to
that reason, we focus on passive techniques.

It is possible to optimize the fingerprinting exactness if the
deployed solutions are not limited to software. Accuracy rates
of more than 99 % are shown to be possible investigating
wireless frames in the modulation domain [4] or using a
technique called radio frequency fingerprinting (RFF) [21],
[19], [8], [7]. Nevertheless, such fingerprinting methods need
dedicated hardware to identify the physical properties of the
radio signal. Thus, they are not suitable in our context, since
we want to fingerprint from standard mobile clients. Other
passive approaches on remote fingerprinting focus on identi-
fying unique device types [6] or device driver types [5]. Hence,
those methods do not satisfy the requirement to differentiate
between APs with the same hardware and firmware.

Bahl et al. [2] propose a method for identifying faked APs
by analyzing the sequence number in the headers of 802.11
frames. These numbers are supposed to intermix if two APs
advertise the same BSSID. Hence, it is only possible to detect
the presence of two APs with the same BSSID but not to
tell which of them is faked. Moreover, this approach is only
applicable if both APs are active simultaneously in a nearby
location.

Another class of approaches is utilizing the phenomenon
called clock skew. Based on work of Moon et al. [15],
Kohno et al. [12] introduced the concept of clock skew
based remote device fingerprinting using the TCP Timestamps
Option in TCP headers (which, when enabled, contain a 32-
bit timestamp generated by the creator of a packet, see RFC
1323 [17]) having timing resolution in milliseconds. The clock
skew is estimated with linear programming (LP). Clock skews
are shown to be distinguishable among different physical
machines yet stable over time. Still, the approach requires
observing a TCP connection to the fingerprintee while wireless
APs can not be directly accessed via TCP in general.

Clock skew fingerprinting in a wireless scenario based on
the TSF timestamps in beacon frames was first studied by
Jana et al. [11]. Instead of the LP method the authors use a
least squares fit estimation (LSF), which is more sensitive to
outliers, as they expect less outliers compared with timestamps
in TCP packets. Moreover, using TSF data requires signifi-
cantly smaller sample sizes due to higher clock resolution. For
measuring the receiving time of a beacon frame, a modified
driver is used. The authors argue that it is not possible to fake
the clock skew using only software because of unpredictable
sending delays due to Medium Access Control. Still, the
fingerprints are not comparable between different machines
due to the influence of the fingerprinting device’s own clock
skew.

The possibility to get access to a precise clock source was
further addressed in [1]. Arackaparambil et al. utilize the TSF
timer; however, their technique does not remove the skew of
the fingerprinter card from the clock skew estimation and is
only evaluated with two WiFi chipsets of the same type.

In general, all attempts for wireless device fingerprinting us-
ing clock skew proposed so far depend on modified drivers and
lack a large-scale evaluation. Moreover, none of the described
methods is able to eliminate the effect of the fingerprinting
device’s own clock skew from the estimation. Hence, the
estimation is not comparable between different devices. To
the best of our knowledge, our proposed method is the first
that addresses and solves all challenges mentioned above.

III. MEASURING CLOCK SKEW

In this section, we introduce our approach for estimating
the clock skew of wireless access points. We start by giving a
mathematical model of clocks and clock skews and extrapolate
how the skew difference between a measuring device and a
measured device can be computed from timestamps taken from
both of them. Then, we explain in detail how we obtain these
timestamps in practice, how we remove the fingerprinter’s own
skew from the result and how we approximate the skew from
noisy measurement data.

A. Mathematics of Clock Skews

A clock c counts time steps from some initial point in
true time ic , where all clocks in this paper use microsecond
resolution. This initial point in time depends on the concrete
device. For example, the main system clock in Unix operating



systems uses 1970-01-01 00:00 as the initial point. Other
clocks may use system start-up or even leave the initial point
unspecified.

The timestamp reported by a clock c at a point t in true
time is denoted by Rc(t). If we had access to an absolutely
exact clock ex the reported time would be Rex (t) = t − iex .
The clocks used in standard hardware are, however, not high-
precision atomic clocks and, hence, a clock c has an offset
offc(t) = Rc(t) − (t − ic), whose absolute value generally
increases over time.

The skew sc of a clock c is the first derivative of its offset,
i. e., the slope of the difference between measured time and
true time. A positive skew means that the clock is too fast,
while a negative skew shows that it is too slow.

We assume the skew to be constant (and, therefore, the
offsets to develop linearly) for the duration of a skew measure-
ment. This assumption is justified by conclusions from related
work as well as our own experiments presented later in this
paper. Hence, the skew in a reasonably small time window
between t1 and t2 can be computed by

sc [t1, t2] =
offc(t2)− offc(t1)

t2 − t1
or, equivalently, by

sc [t1, t2] =
(Rc(t2)− (t2 − ic))− (Rc(t1)− (t1 − ic))

t2 − t1
=

Rc(t2)− Rc(t1)

t2 − t1
− 1 .

However, we typically do not have access to an absolutely
exact clock. Hence, we have to take the skew of the measuring
device’s own clock m into account.

Rewriting the equation above, we have

Rc(t2)− Rc(t1) = (1 + sc [t1, t2]) · (t2 − t1) (1)

for the measured clock (in our case, the AP’s TSF clock) and

Rm(t2)− Rm(t1) = (1 + sm [t1, t2]) · (t2 − t1) (2)

for the clock of the measuring device (the fingerprinter’s
system clock). If we now measure the time between t1 and
t2 with both clocks then we can compute (by substituting
Equations 1 and 2 and canceling t2 − t1)

(Rc(t2)− Rc(t1))− (Rm(t2)− Rm(t1))

Rm(t2)− Rm(t1)

=
sc [t1, t2]− sm [t1, t2]

1 + sm [t1, t2]
≈ sc [t1, t2]− sm [t1, t2] .

The denominator can be neglected in the last expression,
since observed clock skews are smaller than 100 ppm, i. e.,
sm [t1, t2] � 1 and, hence, the error due to neglecting it is
relevant only in the fifth significant digit.

In summary, we can compute the difference between the
clock skew of a measured device and the clock skew of a
measuring device from timestamps taken by both of them. In
order to be usable as a fingerprint of the measured device,
which has to be comparable between different fingerprinter

devices, we need an estimation of the fingerprinter’s own skew
sm and then add it to the resulting expression above to obtain
the pure skew sc of the fingerprintee.

In the following sections, we discuss how we use this in
practice. In Sect. III-B, our method for taking the timestamps
Rc from an access point as well as Rm from the measuring
wireless client is explained. In Sect. III-C, we propose to use
the drift recorded by NTP implementations as an estimation
of the measuring device’s skew sm . Finally, in Sect. III-D,
we illustrate how we approximate the clock skew as a linear
slope, because in practice we do not only measure two points
in time, but a sufficiently large sample in order to counteract
possible measuring inaccuracies.

B. Determination of Timestamps

In order to measure the clock skew of an access point’s TSF
clock, two timestamps, namely Rc for the fingerprintee and
Rm for the fingerprinter, have to be taken at multiple points
in time. In this case, Rc is the current value of the access
point’s TSF timer when a beacon frame is sent and Rm reflects
the time of the fingerprinter’s clock when the same beacon is
received.

The current value of the access point’s TSF timer is avail-
able in an almost optimal manner. Beacon frames contain a
64-bit timestamp in microsecond resolution, which equals—
according to 802.11 specification—the value of the TSF timer
at the time where the data symbol containing the first bit
of the timestamp is tramsmitted (plus the delay caused by
its physical interface before the actual transmission). Thus,
assuming an appropriate implementation, this timestamp is
perfectly suitable for clock skew estimation and requires no
further improvements.

A determination of the fingerprinter’s receiving time is more
challenging. The estimation’s accuracy strongly depends on
the clock source. Precise measurements have to be performed
in kernel space in order to avoid effects caused by unpre-
dictable processing delays. Previous works modified drivers to
overcome this problem. In [11], an adapted driver executes a
dogettimeofday() system call when a packet is received.
Hence, the critical measurement is shifted from user space to
kernel space. The driver modifications presented in [1] are
necessary to utilize the client’s TSF timer as clock source.

Our approach avoids a modification of the used drivers.
We implemented a lightweight tool for accurate recording
of beacon frames based on the Python library scapy1. For
measuring the receiving time, it performs an ioctl call with
the request code SIOCGSTAMP. On Unix-based systems,
ioctl (short for input/output control) calls are dispatched by
the kernel to a driver in order to perform device specific
operations. In our case, we obtain a timestamp that is recorded
by the driver when receiving the frame by querying the kernel
for its system clock value in microsecond resolution. Hence,
we are able to achieve the same accuracy as in [11] without
altering any driver implementation. We tested this method on

1http://www.secdev.org/projects/scapy/



several customary laptops running different Linux distributions
and found the ioctl call to be implemented and function
correctly for each wireless NIC driver that supports monitor
mode.

C. Elimination of Measuring Device Skew

Once the sample of timestamps is recorded, there still
remains one challenge, which could not be solved so far.
As shown in the mathematical model, we can only compute
sc − sm , i. e., the subjective skew between the access point’s
TSF timer and the fingerprinter’s system clock. To use the
skew as fingerprint, this influence has to be removed to make
measurements performed by different fingerprinters compara-
ble. We propose to use the drift recorded by an NTP daemon
as an estimation of sm .

In general, NTP is designed to synchronize clocks over
network connections. For details of the specification, we refer
to [13]. On Unix-based systems, ntpd is a daemon process
that implements a software phase-locked loop. Based on a
complex clock discipline algorithm, it calculates the clock
offset using a phase/frequency predictor. For further details
about the exact procedure, we refer to [14]. Finally, this offset
is used to calculate a correction for the system clock which is
applied by the kernel once each tick interrupt with the aim of
minimizing the clock skew.

Nevertheless, it is not necessary to run ntpd during the
recording of beacon frames. ntpd stores the clock drift it has
observed over time as a constant in a file in order to reuse
this value, e. g., for re-initialization after reboot. Therefore, it
is enough to calculate this drift only once. We read the clock
drift value and use it as approximation of sm . By adding this
value to the subjective clock skew estimation, we obtain a
precise estimation of the access point’s clock skew sc , which
is now fingerprinter independent. In preliminary experiments
we found that after running ntpd for some hours the accuracy
of this constant value is sufficient.

D. Approximation of Slope

The last remaining step for estimating clock skew as device
fingerprint is how to actually approximate the slope of the
offset pattern. We use a data set consisting of n points (data
pairs) (xi, yi), i = 1, . . . , n, where xi = Rm(ti) − Rm(t1)
is the receiving time with respect to the fingerprinter’s clock
and yi = (Rc(ti)− Rc(t1))−(Rm(ti)− Rm(t1)) is the offset
between the TSF time and the receiving time. Due to the before
mentioned assumptions, we expect this sample to follow a
linear pattern. Simple least squares fit (LSF) linear regression
is a standard approach to estimate two parameters α and s
for which the straight line y = α + s · x fits best into the
observed data. The solution minimizes the sum of the squares
of the estimation errors. In the following, we show how to
efficiently solve this problem in order to calculate the slope s
as approximation of sc [t1, tn]− sm [t1, tn].

LSF as well as the margin of error (i. e., the radius around
the current slope estimation containing the true slope with
a confidence of 95 %) for the resulting approximation are

usually computed with respect to all data points observed.
Since stabilization of the approximation is not predictable a
priori due to noisy data, we would need to compute both
values—the slope estimation and the margin of error—over
the whole data set at each newly received beacon to determine
if the margin of error is sufficiently small to terminate. This is
not feasible on fingerprinters with limited resources—such as
mobile devices. Therefore, we propose to use an online variant
of LSF and a heuristic for termination, both of which can be
incrementally computed in constant time for each new beacon.

Using the displacement law (Steiner theorem) the slope
estimation in the n-th step can be expressed as

s(n) =
(
∑n
i=1(xiyi))− n · x̄nȳn
(
∑n
i=1 x

2
i )− n · x̄2n

.

In order to calculate s(n + 1) all sums that have to be
calculated can be split into a sum, that has already been built
in the previous step and an addend that covers the new value
(xn+1, yn+1). Hence, it is sufficient to only store the values∑n
i=1 xiyi,

∑n
i=1 x

2
i ,
∑n
i=1 xi and

∑n
i=1 yi from the previous

iteration in order to adjust the LSF estimation for the new
values, i. e., the receiving time and offset for the next beacon
frame.

An indicator for the accuracy that does not require knowl-
edge of all data points is the evolution of slope estimations.
As the online LSF calculation stabilizes, the difference of
succeeding estimations will decrease since the influence of
new points declines. We define two values: A threshold
θ, which expresses the maximum acceptable difference of
two succeeding estimations and a threshold counter cθ. Let
LSFonl(n) be the estimation of the slope using online LSF
after the n-th iteration. Then, in each iteration n, we calculate

∆(n) = |LSFonl(n)− LSFonl(n− 1)| .

The algorithm terminates, when ∆(n) < θ in cθ succeeding
iterations. The parameters θ and cθ can be used to define a
trade-off between the minimum level of accuracy required by
the application and the duration of estimation.

In Sect. IV-B we show how to practically determine the
parameters and evaluate our approach.

IV. EVALUATION

A major contribution of this paper is a comprehensive
evaluation of remote clock skew estimation. In particular, we
managed to fingerprint 388 physical access points. In this
section we provide the results of our evaluation and expose
how different physical devices can be distinguished based
on the information leakage from the TSF time in beacon
frames. At first we describe how we collect the data. We then
propose and evaluate a method to determine the parameters
for the termination heuristic proposed in Sect. III-D. Finally,
we reveal our study on two most important properties of clock
skews: their distribution between different devices (from which
one can conclude its uniqueness) and its stability over time
(that is a means for its applicability).



A. Data Set

In this section we describe how we collected the data for
evaluation. In order to obtain an extensive and independent
data set, we measure the clock skew of as many different APs
as possible by applying the following procedure.

To make the clock skew estimation independent of the
fingerprinting device, we determine the values of sm by
running the NTP daemon for 48 hours on each laptop. This
is done only once at some point of time prior to running the
experiments.

Our method probes for used 802.11 channels and stores the
TSF timestamps extracted from beacon frames together with
the receiving timestamps as described in Sect. III-B over a
period of 10 minutes for each channel that has at least one
active AP. Thus, up to 6,000 beacons can be recorded for
an AP assuming standard configuration of the inter-beacon
interval (i. e., 100ms).

During our experiments we used 5 different laptops running
Ubuntu 10.10 and the standard driver provided by the distri-
bution for the appropriate WiFi chipset. Note that all these
laptops are equipped with a different WiFi chipset and, hence,
all used different drivers (see Table I for details).

Wifi chipset Driver

reddog Intel Pro/Wireless 2200BG ipw2200
SERRES Broadcom BCM4312 802.11a/b/g b43
RDIntel Intel Pro/Wireless 3945ABG iwl3945
XAMES Intel Pro/Wireless 4965 iwlagn
Lumpi Atheros AR5001X+ PCMCIA ath5k

TABLE I
WIFI EQUIPMENT ON THE FINGERPRINTER HOSTS

We ran the experiment at 63 different places, including
residential areas, public places (e. g., city center), and univer-
sity campuses in 4 different countries (Germany, Luxembourg,
France, and Belgium). Samples with less than 500 beacons
over 10 minutes (which occur, e. g., due to a poor signal
level) were discarded. This resulted in a total number of 388
measured physically different APs (we excluded virtual multi-
SSID networks that operate on the same AP as the same
TSF timer is used for their beacon generation and, thus, they
have the same clock skew). Consequently, we were able to
build a data set containing approximately ten times as much
APs as in the biggest evaluation performed so far [11]. While
Arackaparambil et al. [1] evaluated their approach using only
2 APs of the same vendor and the same chipset, our data set
contains data from more than 50 different vendors.

The data was captured on live systems with real user traffic.
In preliminary experiments we verified that traffic on the
wireless medium has no significant influence on our approach.

In summary, our data set is notably representable and inde-
pendent as it contains data from a large number of different
devices, from different places, times, types of access points
(public/private) and the captured APs show wide distribution
across different vendors. To the best of our knowledge, we

collected the most comprehensive data set in the area of clock
skew measurements with “real world” APs so far.

B. Defining Termination Parameters

In Sect. III-D, we have shown how to apply parameters θ
and cθ in order to determine when the online algorithm for
clock skew estimation should terminate. Here, we describe a
method how to define suitable values for these parameters.

We first evaluate the average margin of error as a function
of beacon frame sample size for a training set of 200 APs
in our dataset, shown in Figure 1. The plotted margin of
error is the range of values above and below the estimated
clock skew, i. e., our sample statistic. The reference value at
each point is the estimated value of the clock skew based
on the data seen up to this point. The margin of error
corresponds to a 95 % confidence interval. Taking the plot
as a reference, we can find the number i of beacon frames
when the required precision is reached. We propose to observe
the absolute values of changes in the estimation slope in the
last steps before the i-th, i. e., |LSFonl(i)− LSFonl(i− 1)|,
|LSFonl(i− 1)− LSFonl(i− 2)|, etc. This way, we are able
to find values of θ and cθ that lead to the approximation of
the desired accuracy.
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Fig. 1. Average margin of error using online LSF as function of beacon
sample size

To evaluate our termination heuristic, we fixed two margins
of error and determined corresponding pairs of θ and cθ: one
of them is more precise, the other is less precise yet much
faster in clock skew estimation. We selected the margins of
error to be 0.15 ppm for the first and 0.5 ppm for the second.
This precision is reached on average after approximately 800
and 300 beacon frames, respectively. This corresponds to 80
and 30 seconds of listening time.

Figure 2 shows the values of θ and cθ, derived as described
above, together with the corresponding cumulative distribution
function (CDF) for the resulting margin of error when applying
our heuristic on the test set of 188 remaining access points
(disjoint from the 200 APs that were used for learning the
parameters). The results show that indeed in 88 % of all cases
the estimation is at least as precise as 0.15 ppm (0.5 ppm
for the second scenario). Moreover, 65 % of all estimations



are at least as precise as 0.05 ppm (0.15 ppm in the second
scenario). Therefore, we can conclude that our termination
heuristic provides a precise estimate for the accuracy defined
beforehand.
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Fig. 2. Cumulative distribution function of the margins of error for different
values of θ and cθ

C. Distribution of Clock Skews

It is important to know how unique the clock skew of a
device is. Even very precise algorithms for the estimation will
not help to uniquely identify APs if many devices have the
same value of the clock skew. In this section, we demystify
the clock skew as a measure for unique device fingerprinting.

The distribution of clock skews in our data set is shown in
Fig. 3. It reveals that all clock skews are in a rather short range
between −30 ppm and 30 ppm with a bias towards negative
values. This is a contradiction to the belief that there is a
significant difference in TSF clock skews of wireless access
points. Nevertheless, the trend of this distribution can also
be found in the results of Jana et al. [11]. Recall that the
authors evaluated only 41 access points and were not able to
make results measured by different fingerprinters comparable.
The maximum difference of two AP’s clock skews in each
of their traces lies also in magnitudes of 30–40 ppm (even
though, due to the presence of the fingerprinter’s skew in
their measurements, their values are in a different range). In
their results one very distinct outlier occurs with an estimated
clock skew of less than −1000 ppm. During our experiments
such results also appeared infrequently. After investigating the
data in detail we found that such estimations were always a
result of the AP’s TSF counter being reset to zero during the
measurement.

The reason for the observed distribution of clock skews to
be within the range of ±30 ppm is probably due to quality
specification constraints by vendors. It is to be expected that
for chrystal oscillators which are used for critical operations
such as the 802.11 communication protocols, a preselection is
done by manufacturers to assure a minimum level of quality.
This is also consistent with the recommendation in the 802.11
standard [10].

Our evaluations show that the clock skew alone cannot serve
as a unique fingerprint for wireless access points. The ob-
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Fig. 3. Distribution of clock skews in the data set

served distribution mitigates the previously believed assump-
tion. However, clock skew can still be used to differentiate
between the APs. It is also of vital importance to study the
variation of clock skew estimations over time and altering
external conditions, such as the temperature. We investigate
this variation and present the results in the following section.

D. Variation of Clock Skew

With the goal of using clock skew as fingerprint it is
important to define a range of tolerable estimation values for
recognizing an AP. It was already shown before that external
factors, e. g., temperature differences, can influence the clock
skew in the order of 1–2 ppm [12], [16]. Taking into account
that clock skew can only be approximated, it is to find out if
the variation range of different clock skew measurements for a
single AP is determined by the accuracy of the approximation
method or by changes of the environmental conditions.

Figure 4 shows two measurements of a single AP performed
by the same fingerprinter over different hours of one day. It
illustrates that the difference in clock skew estimation is no re-
sult of inaccuracy of the underlying estimation algorithm LSF
since both samples are characterized by clearly distinguishable
slopes. Consequently, since the accuracy of approximation
with LSF is much more precise (±0.005 ppm on average after
10 minutes of sniffing) than this exemplary variation of the
clock skew (0.86ppm), we argue that the precision of LSF
is sufficient and, instead, it is important to investigate the
influence of environmental conditions on clock skew.

Therefore, we conducted an experiment where we measured
the skew of four different APs for all 30 minute intervals
over a period of one week by four different fingerprinters.
The progress of temperature characterizes a regular week in
an office setting leading to a temperature variation within
approximately 5 ◦C during the experiment. Figure 5 shows
the distribution of estimation values across all fingerprinters,
visualized with boxplots. The clock skew estimation varies
significantly in a range of 1 ppm over the period of one week
even for this rather stable indoor setting. All used finger-
printers exhibit similar spans, where the measured variations
can be explained by fluctuations of the APs’ as well as the
fingerprinters’ clock skews (e. g., temperature changes may be
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Fig. 4. Two measurements of the same AP by the same fingerprinter at
different times

compensated differently by fan control systems of fingerprinter
devices).
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Fig. 5. Variation of clock skew measurements

This experiment further helps to verify the ntpd correction
value as valid approximation of sm . From the visualization
we can deduce that the medians of all distributions are very
close and since the notches of all boxes overlap we can
conclude with 95 % confidence that the true medians do not
differ significantly. Hence, the clock skew estimations are
comparable between all four fingerprinters and, therefore, the
approximation of sm holds true in practice.

To conclude, the influence of environmental conditions for
clock skew estimation seems to be unpredictable in practical
usage and a clock skew difference of 1 ppm has to be accepted
for recognition of a clock skew based fingerprint.

V. CONCLUSION

In this paper, we have studied the limits of wireless device
identification based on clock skew. We have shown how to
estimate the clock skew without any modification of the driver
or operating system. We utilize timestamps regularly sent
by access points in beacon frames—which is, to the best
of our knowledge, the most precise remote time information
that is disclosed. The major advantages of our method are
that it is online, able to achieve arbitrary precision, and

eliminates the influence of the measurement device’s skew.
Therewith, fingerprints performed by different devices become
comparable. We conducted a large scale evaluation to explore
the distribution and stability of clock skew among different
access points and measurement devices. We found that the
fluctuation of clock skew reaches up to 1 ppm. Moreover,
a significant number of devices share a similar skew value.
Hence, even though the clock skew restricts the set of possible
devices, it cannot serve as a unique fingerprint for a wireless
access point and has to be enriched with other features to
achieve uniqueness.
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