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Abstract—The usage of public Wi-Fi hotspots has become
a common routine in our everyday life. They are ubiquitous
and offer fast and budget-friendly connectivity for various client
devices. However, they are exposed to a severe security threat:
since 802.11 identifiers (SSID, BSSID) can be easily faked, an
attacker can setup an evil twin, i.e., an access point (AP) that
users are unable to distinguish from a legitimate one. Once a user
connects to the evil twin, he inadvertently creates a playground
for various attacks such as collection of sensitive data (e.g.,
credit card information, passwords) or man-in-the-middle attacks
even on encrypted traffic. It is particularly alarming that this
security flaw has led to the development of several tools that are
freely available, easy to use and allow mounting the attack from
commodity client devices such as laptops, smartphones or tablets
without attracting attention. In this paper we provide a detailed
overview of tools that have been developed (or can be misused)
to set up evil twin APs. We inspect them thoroughly in order
to identify characteristics that allow them to be distinguished
from legitimate hardware-based access points. Our analysis has
discovered three methods for detecting software-based APs. These
exploit accuracy flaws due to emulation of hardware behavior
or peculiarities of the client Wi-Fi hardware they operate on.
Our evaluation with 60 hardware APs and a variety of tools
on different platforms reveals enormous potential for reliable
detection. Furthermore, our methods can be performed on typical
client hardware within a short period of time without even
connecting to a potentially untrustworthy access point.

I. INTRODUCTION

Public Wi-Fi networks have become indispensable in our
daily life. They provide fast Internet access at little cost
(often even free of charge) in public places such as hotels,
airports or cafés. For many devices that cannot access mobile
3G/4G networks (e.g., laptops, tablets), Wi-Fi offers the only
possibility for connecting to the Internet. Moreover, using
such networks is essential whenever mobile networks are too
slow, overpriced or not accessible due to roaming. Therefore,
connecting to public Wi-Fi networks has become a usual
routine for many users – despite potential security risks.
As a matter of fact, the 802.11 standard does not provide
strong identifiers for Wi-Fi access points. The only attributes
that users or client applications can use to verify an AP’s
authenticity are its SSID (the network name) and the BSSID
(the MAC address of the AP). These identifiers can be trivially
spoofed by an attacker, enabling him to set up a faked AP,
impersonating the legitimate AP’s identity and therefore being
unrecognizable by clients. This threat is commonly referred
to as the evil twin attack. Once the user has fallen into the

trap by inadvertently connecting to a faked AP, the attacker
can mount various attacks. Besides harvesting and analyzing
data, the establishment as intermediary enables the attacker
to act as a man in the middle and, hence, to attack encrypted
connections. This appears even more menacing considering the
fact that users in general tend to accept unsigned or wrongly
signed certificates [20]. For a categorized review of the threat
model we refer the reader to [13].

Several security mechanisms for 802.11 networks exist,
but they fail to provide thorough protection against evil twin
attacks in public Wi-Fi networks: when Wi-Fi Protected
Access (WPA) is applied, the communication is encrypted
with a pre-shared key (PSK). Such a mechanism could only
mitigate evil twin attacks if the PSK were solely distributed
to legitimate clients but concealed from an attacker. However,
this is generally not possible for public hotspots, where the
key must be distributed to clients, e.g., printed on a receipt. In
802.1X/WPA-Enterprise enabled networks, the authenticity is
guaranteed by strong cryptographic primitives and Certification
Authority certificates in particular. While such a mechanism is
suitable for restricting access to corporate/enterprise environ-
ments for a limited set of users, it is not applicable to public
Wi-Fi networks: it requires complex setup and maintenance,
and most providers of public hotspots have no incentive to
deploy such a solution. Finally, many Wi-Fi hotspots use
web-based authentication: the first connection attempt is
redirected to a website locally hosted by the operator (called
a captive portal) that provides a disclaimer and requests login
or credit card information for accounting. Nevertheless, this
solution does not provide any security for the user at all: the
captive portal can be simply cloned by the attacker and the
information entered can be stored for further misuse. Note that
this task can be fully automated using appropriate tools (see
Section III).

Consequently, the research community has proposed a
variety of protection mechanisms in the past decade. These
works generally disregard the fact that the attacker does not
necessarily have to set up the evil twin using a dedicated hard-
ware device. Instead, several software tools exist that allow to
mount the attack in multiple variants from commodity mobile
devices, particularly those running Linux. As we will show,
even the built-in mobile hotspot feature of current smartphones
is sufficient. Such an approach is generally preferable for the
attacker. On the one hand, there is no need to make additional
expenditure to obtain and set up hardware if he is equipped



with a set of software tools that is capable of doing the same –
or even more, since the tools are able to fully automate most
aspects of the attack. On the other hand, the use of software
on a mobile device minimizes to risk of being discovered and
prosecuted. Therefore, we address the detection of software-
based 802.11 evil twins in particular.

Our contributions are as follows:

• We provide a comprehensive overview of available
tools for evil twin attacks. We analyze their capabil-
ities and weaknesses (both experimentally and based
on source code review) to disclose those that attackers
most likely use in practice.

• We reveal several distinguishing marks that available
tools exhibit. These are not limited to implementa-
tion errors (which could easily be avoided) but also
consider inevitable characteristics, e.g., accuracy flaws
caused by the emulation of hardware behavior. We
propose methods that enable the detection of software-
based APs, or even of the specific type of software in
use.

• We experimentally validate our methods and show
their detection capabilities for various platforms. To
the best of our knowledge, we are the first to provide
methods for the reliable detection of software-based
evil twin attacks.

II. RELATED WORK

The proposed methods to protect against evil twin attacks
can be grouped into three major categories: protocol mod-
ifications, hardware fingerprinting, and non-hardware-based
identification. A few approaches propose modifications to
existing protocols [5], [2], [7]. They introduce concepts similar
to TLS/SSL to authenticate wireless APs. To achieve protection
they either require unique SSIDs that are tied to certificates
or apply a trust-on-first-usage strategy similar to the SSH
protocol. However, methods requiring the modification of
standard protocols are undesirable as they cannot be easily
deployed in existing networks.

The second category of approaches utilizes the hardware
characteristics of an AP in order to create its fingerprint.
Ideally, this fingerprint should be unique, even for devices of
the same vendor and series. Naturally, such methods require a
trusted central party to collect and manage fingerprints. Sev-
eral approaches exploit an unavoidable physical phenomenon
called clock skew that causes clocks based on crystal oscil-
lators to have small yet observable deviations in speed [10],
[1]. Though it was shown that a significant amount of devices
share a similar clock skew, recently proposed methods [12]
utilize device-intrinsic temperature dependency to significantly
enrich the fingerprints’ information content. Another hardware
characteristic utilized to distinguish physical devices is based
on radiometric signal properties of the wireless unit [4], [17].
Though these methods are extremely precise, they require
dedicated specialized hardware for measurements and cannot
be performed by a regular client device.

Non-hardware-based identification methods focus on the
investigation of network or environmental properties of APs
to detect an evil twin. Some approaches aim to detect an evil

twin if it introduces an additional wireless hop on each route.
These methods assume that the fake AP uses a wireless link to
the legitimate AP in order to relay its Internet connection. In
[8] the authors detect an extra hop on the path by analyzing the
RTT to a local DNS server. Song et al. [19] consider the inter-
packet arrival time to distinguish between a one-hop and a two-
hop wireless channel. Mónica et al. [15] create watermarked
packets to detect whether these are relayed on a different
wireless channel. Note that a legitimate hotspot connected to
the Internet via a wireless link would also be classified as
evil twin by these methods. Another approach [11] assumes
that the attacker is running several SSIDs on the same device
and tries to detect this by correlating received signal strengths.
In summary, the above mentioned methods only solve a part
of the problem: they detect the coexistence of an evil twin
in situations where the fake AP routes traffic through the
legitimate AP, is connected via a wireless link to the Internet,
or address situations where the attacker runs several SSIDs on
the same device (although neither is necessarily a sign of a
fake AP).

Another group of non-hardware-based approaches attempts
to fingerprint behavioral characteristics of the AP, e.g., timings
related to the authentication procedure [18] or packet inter-
arrival times [16]. However, these methods either require an
additional device for monitoring, or achieve relatively low
detection rates of about 50%. Bratus et al. [3] utilize malformed
stimuli-response, i.e., how devices react to manipulated or
fragmented frames to create a fingerprint. However, this was
a proof-of-concept without thorough evaluation. Gonzales et
al. [7] focus on the group of simultaneously reachable APs
instead of isolated devices. They define a context as a set of
tuples containing SSID and RSSI for all APs visible from
a certain location. The AP’s check fails if its context has
significantly changed. This approach only works when the
attacker sets up the evil twin at a different location from the
legitimate AP. Another method is based on the network intru-
sion detection system from the side of the network operator
[14].

To sum up, the methods proposed so far only partially solve
the problem of evil twins. Moreover, though the most typical
attack scenario is to use a software-based AP, no single method
(besides our initial attempt [13]) has been proposed that tries
to determine whether the AP is software- or hardware-based.
With our work we aim to tackle this issue.

III. SOFTWARE-BASED 802.11 ACCESS POINTS

In this section, we present an overview of existing software
tools that are either explicitly designed for or that can be
misused to perform evil twin attacks in 802.11. We require
considered tools to be capable of creating a fully operational
802.11 access point, i.e., a master station in an infrastructure
basic service set (BSS). We refer to such a setup as Soft-
AP. Additionally, the tools should run on available (i.e., not
obsolete and therefore unsupported) hardware.

On a Linux-based operating system, a Soft-AP can be
set up by combining a wireless network interface controller
(WNIC) operating in master mode – requiring the chipset and
the driver to support it – and hostapd1, a user-space daemon

1http://w1.fi/hostapd/



that implements AP management and all relevant authenti-
cation methods. Hostapd supports most wireless drivers, in
particular all that are built on the mac80211 framework2. Being
comprehensively configurable, hostapd can be considered as a
candidate to be misused by an attacker to set up an evil twin.

The MadWifi3 drivers used to be a popular choice for
WNICs with Atheros chipsets. Based on a proprietary hard-
ware abstraction layer (HAL), they allowed control of many
functions including the setup of multiple virtual APs. As one of
the most advanced Wi-Fi drivers for Linux, MadWifi was also
used in security research [1]. However, the MadWifi project
was abandoned years ago and the drivers have been superseded
by ath5k and ath9k which replace the proprietary HAL with the
standard mac80211 framework and are now part of the Linux
kernel. Since these do not provide advanced functionality for
the setup of Soft-APs and the deprecated MadWifi drivers are
not supported by modern hardware and kernels, we omit their
separate evaluation.

The aircrack-ng4 suite is a set of actively developed
and maintained tools implementing various types of attacks
in 802.11 environments. It is intended for auditing the se-
curity of wireless networks. Among other components, the
suite contains a tool called airbase-ng, which is a Soft-AP
implementation aiming at attacking clients in particular. To
this end, it is able to manipulate and resend packets and to
capture WPA(2) handshakes. Running on a variety of Wi-Fi
chipsets and being available as Live CD, aircrack-ng can be
considered to be a fully-featured toolbox that attackers could
use out of the box for evil twin attacks.

Karma5 is a set of patches which implements the ad hoc
clone attack [13], where the AP creates networks on the fly
that match those probed by users. It was originally written
for MadWifi and later ported to hostapd. Karmetasploit6

and Katalina7 are implementations of Karma for airbase-ng.
Besides the ad hoc clone strategy, these tools provide further
components to automate sub-tasks of evil twin attacks such
as configuring an appropriate DHCP server. Since all these
tools are internally based on one of the two major Soft-AP
implementations for Linux, i.e., airbase-ng or hostapd we omit
their detailed analysis and only focus on their core – if we can
detect airbase-ng and hostapd we implicitly also cover these
tools.

We also disregard several tools that do not satisfy our
basic requirements: Fake AP8 is capable of creating multiple
counterfeit APs in order to confuse network scanners. How-
ever, these APs are not operational and the tool is limited
to obsolete Prism Wi-Fi chipsets. Similar limitations pertain
to rfakeap9, which simulates the presence of an AP at the
management frame level, and Airsnarf10, a proof-of-concept
implementation to provide faked captive portals in order to

2http://wireless.kernel.org/en/developers/Documentation/mac80211
3http://madwifi-project.org
4http://www.aircrack-ng.org
5http://digi.ninja/karma
6https://dev.metasploit.com/redmine/projects/framework/wiki/Karmetasploit
7https://github.com/kussic/Katalina
8http://faculty.ccri.edu/jbernardini/JB-Website/ETEK1500/LinuxTools/

FakeAPMain.htm
9http://rfakeap.tuxfamily.org
10http://airsnarf.shmoo.com

steal users’ credentials. mdk311 implements, among other
attacks such as forced deauthentication, AP emulation similar
to FakeAP through beacon flooding, i.e., by sending numerous
beacons of short-lived virtual devices. These can cause a
denial of service or crash certain network scanners, but are
not intended to provide any service.

The major mobile operating systems, Android and iOS,
include a built-in feature to set up a Soft-AP, called Tethering
and portable hotspot (Android) and Personal Hotspot (iOS).
These functions are restricted in regard to the supported
number of connections and can only route traffic through the
device’s cellular 3G/4G connection. Although the functionality
and performance are quite limited, they are still sufficient
to perform evil twin attacks. Besides running appropriate
interception tools on a (rooted) device, an attacker could set
up practically any portable device to connect via a built-
in VPN function, e.g., PPTP, to a gateway controlled by
him and route the traffic of victims connected to his mobile
hotspot through this tunnel. The gateway can then serve as
an intermediary for man-in-the-middle attacks. This method
should work on any smartphone – without the device being
rooted or installing additional apps. Windows 7 & 8 include
Soft-AP functionality called Windows Virtual Wi-Fi. We are
not aware of any specialized tools for evil twin attacks using
Windows besides those to simplify the setup process of a Soft-
AP. Nevertheless, the strategy described for smartphones could
be easily deployed to mount the attack from a laptop running
Windows.

The boundaries between Soft-APs and hardware-based APs
are often blurred. As mentioned, the basic requirement for an
802.11 AP is an appropriate Wi-Fi chipset supporting master
mode and suitable software for functionality, management and
authentication. We define a hardware (or genuine) AP as an
embedded device only built for this purpose. Note that the
Wi-Fi chipsets used for hardware APs are not necessarily
different from those embedded in client Wi-Fi adapters hosting
a Soft-AP. Although specialized Wireless Systems-on-a-chip
(WiSoC) exist that are explicitly designed for use in (enter-
prise) wireless APs, in fact, many popular chipsets such as
the Atheros AR5005GS or the Broadcom BCM4318 are used
for both client adapters and hardware APs12. Besides, it is
often the case that the operating systems of hardware APs are
based on Linux and use hostapd to control the functionality,
e.g., OpenWRT. Still, we endeavor to explore characteristics
that can distinguish between Soft-APs and genuine APs. These
may be based on implementation discrepancies, inaccuracies
due to emulation delays or even, as we will show in the next
section, on slight differences in the firmware used for identical
chipsets in different environments.

IV. METHODS FOR DETECTION

In this section, we describe the particularities that Soft-
APs exhibit, which we have identified either based on source
code review or by experimentation. We focus our analysis on
two types of management frames in 802.11: beacon frames
and probe frames (probe requests/responses). Beacons are
periodically sent (typically every 100 ms) by APs to announce

11http://aspj.aircrack-ng.org/#mdk3
12See available lists on https://wikidevi.com



TABLE I: Laptops used for our experiments

OS Wi-Fi chipset Driver

Host A Ubuntu 12.04 Atheros5002X ath5k
Host B Ubuntu 10.10 Broadcom BCM4312 a/b/g b43
Host C Backtrack RC5 Intel Pro/Wireless 3945ABG iwl3945
Host D Ubuntu 12.10 Broadcom BCM4313 b/g/n b43
Host E Ubuntu 14.04 LTS Intel WiFi Link 5100 iwlwifi

their presence to nearby stations (passive scanning) and for
timing synchronization. Such frames can be analyzed in a
completely passive way, i.e., without any interaction. Probe
frames, on the other hand, are explicitly sent by stations
(active scanning). This enables clients to actively probe for
certain APs (either known ones or APs that fulfill queried
characteristics, e.g., a minimum supported rate). Limiting the
evaluation to these types of management frames is desirable
because they can be analyzed before initiating any connection
to a potentially untrustworthy AP. An overview of the laptops
used in our experiments including operating systems and Wi-Fi
equipment is shown in Table I. We implemented all described
methods using the Python library scapy13.

A. Analyzing beacons to disclose TSF (in-)accuracy

In [13] we showed that airbase-ng is highly sensitive
to accuracy flaws in Timing Synchronization Function (TSF)
timestamps and proposed an appropriate detection method.
Here, we provide a more detailed analysis of this technique
and explore whether it can be transferred to other types of
Soft-APs. To this end, we briefly recapitulate the background
and method. An AP serves as the timing master for all as-
sociated stations. Therefore, the beacon frames it periodically
emits contain a timestamp of its TSF timer in microsecond
resolution and all client stations adjust their local TSF timer
to this value. 802.11 specifies strict constraints for the ac-
curacy of TSF timestamps: an AP should set the timestamp
such that it equals the TSF timer at exactly that moment,
when the first bit is actually transmitted [9]. We argued that
whenever software needs to emulate this methodology (for
which genuine APs use optimized firmware/hardware) the
accuracy of generated timestamps diminishes. As a detection
method we introduced the root-mean-square error (RMSE)
of an ordinary least squares regression (OLSR) fitted into
a trace of recorded beacons. Formally, a trace is given by
T = {(tREC1 , o1), ..., (tRECn , on)}, where tRECi denotes the
time when the ith beacon was received and oi = tTSF i−tRECi

is the offset between the TSF timestamp in the ith beacon
and its respective reception time. While such a trace forms
an accurate linear pattern for hardware APs, we observed that
traces for airbase-ng exhibit a significant number of outliers
and generally a greater scattering. We were able to distinguish
between airbase-ng operated on four different laptops and a
set of 30 hardware APs by comparing the RMSE of a trace
defined as

RMSE(T ) =

√√√√ n∑
i=1

(PT
LSR(xi)− yi)2

n

13http://www.secdev.org/projects/scapy/
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Fig. 1: Average RMSE of TSF accuracy for different Soft-
AP implementations or platforms (including 95%-confidence
intervals)

where PT
LSR(x) = αx + β is the prediction function of an

OLSR for that trace.

We now investigate whether this method can also detect
other Soft-AP implementations. In each run, we set up one
laptop to host airbase-ng or hostapd (if supported, see Section
III). We then recorded 60 traces of 200 beacons each from all
remaining laptops. Additionally, we set up Soft-APs on Host
D with Windows 7, two additional Laptops with Windows 8,
an iPhone 4, and three Android devices, a Samsung Galaxy
S3 mini (Android 4.1.2), a HTC Wildfire (Android 2.3) and
a Google Nexus 7 (Android 4.4) and recorded their beacon
traces accordingly. Finally, we gathered 30 additional traces
for hardware APs resulting in 60 different hardware APs in
our dataset. The average RMSE calculated for 200 beacons
is shown in Figure 1. Hardware APs show an expected low
RMSE (i.e., a high accuracy) of 10.5 on average. The results
for airbase-ng reflect our observations in [13]: the average
RMSE is larger by several orders of magnitude and, so,
reliably detectable. All other investigated Soft-APs exhibit
a TSF accuracy that is comparable to hardware APs – the
deviations can be attributed to measuring inaccuracies and the
small number of test devices. We expect that the reason for this
result is the way the Soft-APs generate beacons, particularly
the value for the TSF timestamp. As mentioned above, genuine
APs use an optimized combination of hard- and firmware to
achieve high accuracy. airbase-ng fails to imitate this accuracy
because the process of beacon generation and transmission is
prone to system delays (see [13] for further details). Obviously,
the other tools investigated here do not rely on emulating this
process in software, but rather delegate this task to low-level
drivers or the hardware. We were able to verify this in the
case of hostapd14, but could not validate it for the other tools
as their source code is not publicly available.

In [13], we further observed that the RMSE magnitude
varies, depending on the laptop hosting airbase-ng. We there-
fore performed additional experiments to narrow down the
influencing factors, particularly the WNIC used. Hosts A,
B and C have a PCMCIA slot allowing the WNIC to be
changed and the same WNIC to be used in different hosts. We

14hostapd defines an interface, which is responsible for appropriate beacon
generation and delivery that compatible drivers must implement.
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experimented with two Wi-Fi cards, a 3COM 3CRWE154A72
(AR5002X) and a Netgear WG511T (AR50056s). Our results
are ambiguous: we could not identify a significant correlation
between the accuracy of TSF timestamps and (a) the Wi-Fi
chipset or (b) the performance of the laptop (e.g., CPU speed).
We even identified a combination (Host C + AR5002X) that
generated TSF timestamps with an accuracy comparable to
hardware APs and, therefore, produces a false negative for our
detection method. However, we cannot derive a general rule
from this exception since the same card did not significantly
reduce the RMSE in the two other hosts. We conclude that
the relation between hardware and TSF timestamp accuracy of
airbase-ng is non-trivial and influenced by additional factors
(e.g., driver, OS). Nevertheless, our method detects airbase-ng
in the overwhelming majority of tests.

In the experiments described above, the airbase-ng in-
stances did not have any clients connected15. This is not
necessarily realistic. Since the attacker mounts the evil twin
attack in order to lure unsuspecting users to connect to the
Internet through his AP, it is likely that there are already
clients connected before a new client associates. We expect
any type of traffic on the fake AP to further decrease the TSF
accuracy of airbase-ng (as it is mainly affected by processing
delays) and, therefore, to improve the detection efficacy of
our method. To verify this, we conducted an additional set of
experiments. Before measuring the RMSE of a host operating
airbase-ng, we associated another laptop to the Soft-AP and
simulated two types of typical load patterns: first, a user surfing
the web (simulated by a script that randomly selects and
retrieves websites from the most popular URLs16); and second,
a user watching a video stream (resulting in a constant bitrate
of about 1500kbit/s). The resulting RMSE for two different
airbase-ng hosts is shown in Figure 2. It clearly validates
our assumption: traffic further decreases the TSF accuracy of
airbase-ng. Note that load has no influence on hardware APs
in respect of this metric: these APs set the timestamp to the
TSF timer’s current value while the beacon is actually sent [9].
Therefore, their accuracy does not depend on delays induced
by system load or wireless traffic. Finally, we conclude that
our proposed detection technique performs best under realistic
settings: the more users are trapped by an airbase-ng evil twin,

15Note that for measuring the RMSE of TSF timestamp accuracy not even
the device performing the measurement needs to be associated.

16according to http://www.alexa.com/topsites

the more easily it can be detected. As shown in [13], the RMSE
stabilizes after receiving 50-100 beacons. Therefore, in practice
the test takes only a few seconds.

B. Probe frames

Probe requests are actively sent by a client and can ei-
ther be directed, i.e., include the SSID/BSSID of a concrete
AP, or broadcast by using wildcard entries. In preliminary
experiments we investigated many aspects of probes to find
characteristics that separate Soft-APs from genuine APs. Be-
sides construction and compliance with specifications, we also
generated probe requests, where fields were intentionally set
to incorrect or empty values – a technique that is commonly
referred to as malformed stimuli-response. During these tests,
we identified two characteristics that can be exploited to detect
Soft-APs.

1) Active probing on adjacent channels: Public Wi-Fi
hotspots typically operate according to the 802.11g/n standard
in the 2.4 GHz band as this ensures compatibility with most
client devices. This band is divided into 14 channels. As
the protocols require 16.25–22 MHz of channel separation but
channel center frequencies are separated by only 5 Mhz, adja-
cent channels overlap. Therefore, it is practically unavoidable
that a Wi-Fi device receives frames that were not sent on
its operating channel. This is referred to as adjacent-channel
interference and occurs in various radio environments. We
observed that hardware APs and Soft-APs treat such frames
differently.

We experimented by sending 100 probe requests on the
operating channel as well as the corresponding adjacent chan-
nels to various hardware APs and Soft-APs. Sample results are
shown in Figure 3, where the histogram bars indicate the frac-
tion of probes that were responded to on the respective channel.
We made the same observation in almost all experiments:
while hardware APs always only respond on their operating
channel, Soft-APs also respond on adjacent channels. The
fraction of responses on these channels roughly corresponds
to the fraction of frames that are expected to be received due
to channel overlapping. Probe request frames may optionally
contain a DSSS parameter set element containing a current
channel value. In our experiments we did not see a difference
according to whether we used this field or how we set it.

In general, it is not possible for a Wi-Fi receiver to deter-
mine through which exact channel a frame was received. In
order to select valid frames sent through the operating channel
and to filter out noise received through adjacent channels,
wireless stations calculate the adjacent channel rejection by
measuring the signal strength and comparing the synchroniza-
tion of the signal modulation (for further details, we refer the
reader to [9]). We presume that the firmware used for Wi-Fi
chipsets in hardware APs is optimized to filter out adjacent
channel interference more strictly compared to client adapters.
This seems reasonable: since APs generally operate on a fixed
channel, they require noise to be filtered as much as possible.
Client adapters on the other hand spend a significant amount
of time scanning for networks. In this scanning process, the
reception of signals in adjacent channels is beneficial as it
leads to faster network discovery. Although it is known that
vendors use different firmware for their chipsets [6], e.g., to



1 2 3 4 5 6 7 8 9 10 11 12 13

Channel

0.0

0.2

0.4

0.6

0.8

1.0
F

ra
ct

io
n

of
re

ce
iv

ed
re

sp
on

se
s

1.00

(a) Hardware AP

1 2 3 4 5 6 7 8 9 10 11 12 13

Channel

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

re
ce

iv
ed

re
sp

on
se

s

0.02

0.69

1.00

0.63

0.03

(b) Hostapd on Host A

1 2 3 4 5 6 7 8 9 10 11 12 13

Channel

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

re
ce

iv
ed

re
sp

on
se

s

0.69

0.90
0.84

0.93

0.80

0.91

0.53

(c) airbase-ng on Host C

1 2 3 4 5 6 7 8 9 10 11 12 13

Channel

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

re
ce

iv
ed

re
sp

on
se

s
0.12

0.21

0.79

0.97

0.71

0.28

0.04

(d) Motorola Moto G hotspot mode (Android 4.3)

Fig. 3: Probe requests responded by different access points on their operating channel (dark) and adjacent channels (light)

restrict functionality for economic reasons, we could not verify
our assumption since the firmware implementation is vendor-
specific and generally not publicly available.

We propose to exploit this fact in the following way:
assume a client device D attempts to connect to an AP A and
wants to test whether it is operated by a Soft-AP. An AP’s
operating channel is denoted as opA. Further, we define an
estimation function e(c1, c2) for two channels c1 6= c2 as the
width of their actual overlapping frequency range divided by
the channel width. In the 2.4 Ghz band for a channel width
of 20 Mhz and center spacing of 5 Mhz between channels
this leads to, e.g., e(6, 7) = 0.75 or e(1, 3) = 0.5. D can
easily determine opA and the set of its adjacent channels
ACA = {c | e(c, opA) > 0}. e serves as rough estimation of
the fraction of frames that are expected to be received from an
adjacent channel. D then sends N probe requests directed to
A on all these channels and determines for each channel c the
response rate respA(c) as the number of corresponding probe
responses divided by N . Finally, D verifies that the following
equation holds for a threshold θ:∑

c∈ACA
respA(c)/e(c, opA)

|ACA|
≤ θ · respA(opA).

By testing whether the weighted mean response rate on
adjacent channels is larger than a fraction of the response
rate on the operating channel, a Soft-AP can be detected. It
is important to consider respA(opA) to take account of the
case where the target AP is distantly located or the band is
overloaded, leading to a generally lower response rate. We

propose to use a threshold θ = 0.1. This leaves some room
for hardware APs with a less restrictive filter but still reliably
detects the Soft-APs in our dataset. For a delay of ∆p between
consecutive probes, the required time for the measurement is
bounded by ∆p ·N ·(|ACA|+1). Therefore, with ∆p = 100 ms
and N = 10 the test can be performed in a few seconds. By
varying N , a trade-off can be defined between performance
and precision of the test.

2) Malformed Probe Request Stimuli: In general, in our
experiments, hardware APs and Soft-APs showed equal reac-
tions to malformed probe request frames. Both implement the
same specification and their compliance is necessary to guar-
antee adequate functionality. However, we made an interesting
observation. 802.11 frames contain four 48-bit address fields
which are set to different values depending on the frame type
and destination. In probe requests, the Address 1 field contains
the destination MAC address (either directed or broadcast) and
the Address 3 field is set to the BSSID (either concrete or
wildcard). Therefore, Address 3 is only relevant for members
of an independent BSS (IBSS, i.e., an ad hoc network) or a
mesh network, since in an infrastructure BSS, the BSSID is
the MAC address of the AP’s WNIC and, hence, both address
entries are identical. The specification clearly states that an
AP receiving a directed probe request should only respond if
Address 1 and Address 3 contain its MAC address. However,
we observed that hardware APs do not check the Address 3
field in probe requests, while several Soft-AP implementations
including Windows and iOS do. This seems comprehensible:
since APs are in general not intended to be part of an IBSS or



TABLE II: Effectiveness of our methods

TSF Adj. Channel Addr3

airbase-ng X X
Hostapd X X
Android

Android 2.3 (Samsung Galaxy Mini) X X
Android 4.1.2 (Samsung Galaxy S3 Mini) X X
Android 4.2.2 (Samsung Galaxy S4 Mini)
Android 4.3 (Motorola Moto G) X
Android 4.3 (Samsung Galaxy S3) X
Android 4.4 (Google Nexus 7) X

iOS
iPhone 4 X X

Windows Virtual WiFi
Windows 7 X X
Windows 8.1 X X

mesh network, the value of the Address 3 field is irrelevant.
Therefore, verification can be avoided to improve efficiency.
Surprisingly, several Soft-APs can be detected because they
obviously avoid this optimization and strictly implement the
specification. This can be easily tested by a client: it only needs
to send some probe requests with a manipulated Address 3
entry (e.g., a random MAC address). The outcome is binary –
either the AP responds to such frames or it does not respond
to any. The latter case can then be interpreted as a sign of a
Soft-AP.

V. EVALUATION AND DISCUSSION

Table II summarizes our results. Estimating the accuracy
of TSF timestamps in beacons yields a powerful detection
mechanism for airbase-ng, as it seems to be the only tool
that implements this time-critical part itself, while the others
delegate this functionality to drivers or the hardware. Ob-
viously, it would be possible to adapt the way airbase-ng
generates beacons to the same way as other tools, leading
to undetectability by this method. However, we argue that
such a modification is not desirable. The fact that airbase-ng
does not depend on low-level functionality is one of its most
important unique features: it can operate on almost arbitrary
Wi-Fi hardware, making it particularly attractive.

Performing active probing on adjacent channels reveals
striking potential for detecting Soft-APs as it does not depend
on implementation issues. This method aims to detect whether
the combination of firmware and chipset is optimized for
hardware APs or client adapters. Our experiments with various
different hardware AP models did not lead to a single false
positive classification by this method. This is particularly re-
markable as our dataset of hardware APs contains at least two
devices running OpenWRT (hence, using hostapd internally)
and, as described earlier, it is more than likely that this also
applies for a significant fraction of hardware APs in general.
Note that the results for hostapd in Table II only correspond
to hostapd being operated on our testing laptops. As intended,
hostapd is only detected as a Soft-AP when it runs on client
hardware and not on a hardware AP. However, we cannot
guarantee that this method is robust against false negatives (i.e.,
Soft-APs that are not detected), since we cannot verify which
chipsets and firmware are embedded in client devices and
how they concretely implement adjacent channel rejection. We
identified a smartphone (Samsung Galaxy S4 mini, Android
4.2.2) that erroneously passed this test and it is to be expected

that this may also apply for other devices. Still, any alarm
raised by this method can be interpreted as clear warning for
the user as false alarms almost never occur.

Malformed probe stimuli with manipulated Address 3
entries only detect a subset of the investigated Soft-APs.
Moreover, it is not as reliable as the other methods since it
exploits an implementation optimization of hardware APs that
is easily reproducible by an attacker – at least when he is using
open-source software. However, the required test can be done
simultaneously with adjacent channel probing and the result
can further corroborate the detection, especially for iOS and
Windows devices.

In practice, we propose combining all three tests. The
interpretation of the results depends on the situation. Of course,
an access point operated by a mobile client device is not
necessarily a sign for an evil twin attack. Nevertheless, when
users set up their smartphone for tethering they know to which
type of device they are connecting beforehand. If, on the other
hand, a user in a public place intends to connect to a public
Wi-Fi hotspot with an SSID starbucks or mcdonalds and our
tests indicate that this hotspot is operated by a mobile device
or even a tool such as airbase-ng, alarm bells should ring. As
described in Section III, several hacking tools exist that enrich
the capabilities of Soft-APs by implementing the ad hoc clone
attack, where the AP dynamically advertises the SSID probed
by clients. Fortunately, such a strategy can be easily unmasked:
when a client has reasonable doubts about the authenticity of
an AP, it can simply create probe requests querying for random
SSIDs. Whenever these are answered, the attack is discovered.

VI. CONCLUSION

In this paper, we have addressed an important security
threat of public Wi-Fi hotspots: the evil twin attack, where an
attacker sets up a faked AP which users cannot differentiate
from the legitimate one. Once lured by the malicious interme-
diary, it is easy to attack the client’s connection and to steal
sensitive data. Numerous tools can be found on the Internet
that do not require special skills and can be used out of the
box to mount evil twin attacks from commodity client devices.
We are the first to explicitly tackle the likely scenario in
which such attacks are performed using specialized software.
We categorize existing tools and explore their functionality to
reveal how the attack is likely to be performed in practice.
airbase-ng, one of the most powerful tools in this regard
exhibits significant inaccuracies in TSF timestamps. As our
evaluation shows, our proposed detection method is able to
reliably identify this characteristic. What is more, the exploited
effect is intensified in the more realistic scenario where load on
the AP is considered. Essentially all software-based APs suffer
from the fact that they run on wireless network adapters that
are optimized to operate as a client and not as an AP. We are
able to identify their less restrictive adjacent channel rejection
based filtering by actively sending probe request frames on
the neighboring channels of the AP’s operating frequency. Our
methods can be easily implemented on typical client devices
and the detection can be performed within a duration of 10–20s
and without connecting to the AP. In summary, our proposed
techniques can greatly improve the security for users of public
Wi-Fi hotspots with minimal overhead and a vanishingly low
amount of anticipated false alarms.
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